🚀 ESM-2 シーケンス分類器
このモデルは、GPT - 4によって生成された合成データで学習された小型のシーケンス分類器です。タンパク質配列を酵素
(クラス0
)、受容体タンパク質
(クラス1
)、構造タンパク質
(クラス2
)の3つのカテゴリに分類します。このモデルは、ESM - 2モデルの1つであるfacebook/esm2_t6_8M_UR50Dを使用して学習されています。
このモデルは十分にテストされておらず、実験および教育目的で使用することを想定しています。注意して使用してください。
🚀 クイックスタート
モデルの使用方法
モデルを使用するには、以下のコードを実行してみてください。
model = EsmForSequenceClassification.from_pretrained("AmelieSchreiber/esm2_t6_8M_UR50D_sequence_classifier_v1")
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
new_sequences_0 = [
"ACGYLKTPKLADPPVLRGDSSVTKAICKPDPVLEK",
"GVALDECKALDYLPGKPLPMDGKVCQCGSKTPLRP",
"VLPGYTCGELDCKPGKPLPKCGADKTQVATPFLRG",
"TCGALVQYPSCADPPVLRGSDSSVKACKKLDPQDK",
"GALCEECKLCPGADYKPMDGDRLPAAATSKTRPVG",
"PAVDCKKALVYLPKPLPMDGKVCRGSKTPKTRPYG",
"VLGYTCGALDCKPGKPLPKCGADKTQVATPFLRGA",
"CGALVQYPSCADPPVLRGSDSSVKACKKLDPQDKT",
"ALCEECKLCPGADYKPMDGDRLPAAATSKTRPVGK",
"AVDCKKALVYLPKPLPMDGKVCRGSKTPKTRPYGR",
]
new_sequences_1 = [
"VGQRFYGGRQKNRHCELSPLPSACRGSVQGALYTD",
"KDQVLTVPTYACRCCPKMDSKGRVPSTLRVKSARS",
"PLAGVACGRGLDYRCPRKMVPGDLQVTPATQRPYG",
"CGVRLGYPGCADVPLRGRSSFAPRACMKKDPRVTR",
"RKGVAYLYECRKLRCRADYKPRGMDGRRLPKASTT",
"RPTGAVNCKQAKVYRGLPLPMMGKVPRVCRSRRPY",
"RLDGGYTCGQALDCKPGRKPPKMGCADLKSTVATP",
"LGTCRKLVRYPQCADPPVMGRSSFRPKACCRQDPV",
"RVGYAMCSPKLCSCRADYKPPMGDGDRLPKAATSK",
"QPKAVNCRKAMVYRPKPLPMDKGVPVCRSKRPRPY",
]
new_sequences_2 = [
"VGKGFRYGSSQKRYLHCQKSALPPSCRRGKGQGSAT",
"KDPTVMTVGTYSCQCPKQDSRGSVQPTSRVKTSRSK",
"PLVGKACGRSSDYKCPGQMVSGGSKQTPASQRPSYD",
"CGKKLVGYPSSKADVPLQGRSSFSPKACKKDPQMTS",
"RKGVASLYCSSKLSCKAQYSKGMSDGRSPKASSTTS",
"RPKSAASCEQAKSYRSLSLPSMKGKVPSKCSRSKRP",
"RSDVSYTSCSQSKDCKPSKPPKMSGSKDSSTVATPS",
"LSTCSKKVAYPSSKADPPSSGRSSFSMKACKKQDPPV",
"RVGSASSEPKSSCSVQSYSKPSMSGDSSPKASSTSK",
"QPSASNCEKMSSYRPSLPSMSKGVPSSRSKSSPPYQ",
]
new_sequences = new_sequences_0 + new_sequences_1 + new_sequences_2
inputs = tokenizer(new_sequences, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_ids = torch.argmax(logits, dim=-1)
for sequence, predicted_class in zip(new_sequences, predicted_class_ids):
print(f"Sequence: {sequence}, Predicted class: {predicted_class.item()}")
⚠️ 重要提示
このモデルは十分にテストされていません。実験および教育目的でのみ使用してください。
📄 ライセンス
このプロジェクトはMITライセンスの下で提供されています。