🚀 アラビア語固有表現抽出モデル
- このモデルは、GigaBERTv4に基づく固有表現抽出(NER)のBIOタグ付けモデルです。
- トレーニングデータはACE2005を使用し、英語とアラビア語のデータが含まれています。
- NERタグには、PER(人物)、VEH(乗り物)、GPE(地理的政治的エリア)、WEA(武器)、ORG(組織)、LOC(場所)、FAC(施設)が含まれます。
- GitHubリポジトリ
🚀 クイックスタート
ハイパーパラメータ
- learning_rate=2e-5
- num_train_epochs=10
- weight_decay=0.01
ACE2005評価結果 (F1)
使い方
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
>>> output = ner_pip('Protests break out across the US after Supreme Court overturns.')
>>> print(output)
[{'entity_group': 'GPE', 'score': 0.9979881, 'word': 'us', 'start': 30, 'end': 32}, {'entity_group': 'ORG', 'score': 0.99898684, 'word': 'supreme court', 'start': 39, 'end': 52}]
>>> output = ner_pip('قال وزير العدل التركي بكير بوزداغ إن أنقرة تريد 12 مشتبهاً بهم من فنلندا و 21 من السويد')
>>> print(output)
[{'entity_group': 'PER', 'score': 0.9996214, 'word': 'وزير', 'start': 4, 'end': 8}, {'entity_group': 'ORG', 'score': 0.9952383, 'word': 'العدل', 'start': 9, 'end': 14}, {'entity_group': 'GPE', 'score': 0.9996675, 'word': 'التركي', 'start': 15, 'end': 21}, {'entity_group': 'PER', 'score': 0.9978992, 'word': 'بكير بوزداغ', 'start': 22, 'end': 33}, {'entity_group': 'GPE', 'score': 0.9997154, 'word': 'انقرة', 'start': 37, 'end': 42}, {'entity_group': 'PER', 'score': 0.9946885, 'word': 'مشتبها بهم', 'start': 51, 'end': 62}, {'entity_group': 'GPE', 'score': 0.99967396, 'word': 'فنلندا', 'start': 66, 'end': 72}, {'entity_group': 'PER', 'score': 0.99694425, 'word': '21', 'start': 75, 'end': 77}, {'entity_group': 'GPE', 'score': 0.99963355, 'word': 'السويد', 'start': 81, 'end': 87}]
📚 詳細ドキュメント
BibTeXエントリと引用情報
@inproceedings{lan2020gigabert,
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic},
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
year = {2020}
}
📄 ライセンス
このモデルはMITライセンスの下で提供されています。
情報テーブル
属性 |
詳情 |
モデルタイプ |
アラビア語固有表現抽出モデル |
トレーニングデータ |
ACE2005(英語 + アラビア語) |