Chat Topics
模型简介
该模型使用BERTopic框架构建,专门用于分析聊天文本并提取有意义的话题分类。适用于社交媒体、客服对话等场景的话题挖掘和分析。
模型特点
模块化设计
采用BERTopic的模块化框架,可灵活调整各个处理环节
多话题识别
能够自动识别75个不同的话题类别
关键词提取
为每个话题提供最具代表性的关键词
大规模训练
基于63,530篇文档训练,覆盖广泛话题
模型能力
文本分类
话题识别
关键词提取
话题可视化
使用案例
社交媒体分析
聊天话题监控
分析社交媒体上的热门讨论话题
识别75个不同的话题类别
客户服务
客服对话分析
分类客户咨询的主要话题
提高客服响应效率
🚀 chat_topics
这是一个 BERTopic 模型。BERTopic 是一个灵活且模块化的主题建模框架,可从大型数据集中生成易于解释的主题。
🚀 快速开始
要使用此模型,你需要先安装 BERTopic:
pip install -U bertopic
你可以按以下方式使用该模型:
from bertopic import BERTopic
topic_model = BERTopic.load("davanstrien/chat_topics")
topic_model.get_topic_info()
✨ 主要特性
主题概述
- 主题数量:75
- 训练文档数量:63530
点击此处查看所有主题概述。
主题 ID | 主题关键词 | 主题频率 | 标签 |
---|---|---|---|
-1 | provide - using - information - sure - help | 26 | -1_provide_using_information_sure |
0 | openai - ai - chatgpt - assistant - language | 7837 | 生成式人工智能 |
1 | anytime - welcome - assistance - helpful - thank | 1342 | 1_anytime_welcome_assistance_helpful |
2 | quantum - particle - physics - particles - relativity | 778 | 物理学 |
3 | story - lived - life - novel - felt | 569 | 3_story_lived_life_novel |
4 | letter - sincerely - regards - email - dear | 516 | 4_letter_sincerely_regards_email |
5 | rust - haskell - programming - java - languages | 504 | 编程 |
6 | css - html - style - div - js | 494 | 网页编程 |
7 | linux - ubuntu - debian - fedora - install | 440 | 7_linux_ubuntu_debian_fedora |
8 | recipe - bake - ingredients - baking - dough | 425 | 8_recipe_bake_ingredients_baking |
9 | websocket - json - socket - api - discord | 425 | 9_websocket_json_socket_api |
10 | communism - capitalism - marx - economic - economy | 424 | 10_communism_capitalism_marx_economic |
11 | dog - pet - breed - breeds - pets | 408 | 11_dog_pet_breed_breeds |
12 | philosophy - theological - philosophical - beliefs - consciousness | 394 | 12_philosophy_theological_philosophical_beliefs |
13 | git - github - repository - software - commit | 381 | 13_git_github_repository_software |
14 | music - songs - musical - lyrics - song | 370 | 14_music_songs_musical_lyrics |
15 | devops - development - developers - industry - develop | 323 | 15_devops_development_developers_industry |
16 | pythagorean - hypotenuse - triangle - math - sqrt | 302 | 16_pythagorean_hypotenuse_triangle_math |
17 | eu - europe - economy - economic - war | 291 | 17_eu_europe_economy_economic |
18 | sleep - asleep - bedtime - procrastination - depression | 280 | 18_sleep_asleep_bedtime_procrastination |
19 | kramer - seinfeld - jerry - cafe - elaine | 279 | 19_kramer_seinfeld_jerry_cafe |
20 | printing - prints - printer - print - printers | 276 | 20_printing_prints_printer_print |
21 | influenza - flu - panic - symptoms - medical | 251 | 21_influenza_flu_panic_symptoms |
22 | chess - chessboard - practice - strategy - learn | 242 | 22_chess_chessboard_practice_strategy |
23 | algorithm - primes - array - integers - python | 240 | 23_algorithm_primes_array_integers |
24 | youtube - viewers - media - google - streaming | 240 | 24_youtube_viewers_media_google |
25 | poison - chemicals - powder - turpentine - smoke | 226 | 25_poison_chemicals_powder_turpentine |
26 | monday - sunday - count_weekend_days - calendar - dates | 216 | 26_monday_sunday_count_weekend_days_calendar |
27 | colors - colour - color - pigments - blue | 208 | 27_colors_colour_color_pigments |
28 | roman - attila - rome - empire - warfare | 205 | 28_roman_attila_rome_empire |
29 | investing - investments - investment - stocks - financial | 204 | 29_investing_investments_investment_stocks |
30 | vocabulary - wordle - words - scrabble - word | 201 | 30_vocabulary_wordle_words_scrabble |
31 | planets - sun - earth - planet - pluto | 198 | 31_planets_sun_earth_planet |
32 | renewable - solar - electricity - energy - electrical | 190 | 32_renewable_solar_electricity_energy |
33 | pygame - ball_radius - draw - circle - canvas | 181 | 33_pygame_ball_radius_draw_circle |
34 | fishing - fish - boat - hiking - camping | 176 | 34_fishing_fish_boat_hiking |
35 | gpus - gpu - motherboard - cpu - hardware | 162 | 35_gpus_gpu_motherboard_cpu |
36 | hvac - remodeling - energy - kwh - housing | 159 | 36_hvac_remodeling_energy_kwh |
37 | database - graphql - databases - postgresql - sql | 159 | 37_database_graphql_databases_postgresql |
38 | información - significado - cómo - como - sistemas | 158 | 38_información_significado_cómo_como |
39 | motherboard - pcie - gpu - bios - computer | 153 | 39_motherboard_pcie_gpu_bios |
40 | crops - produce - planting - peppers - plants | 148 | 40_crops_produce_planting_peppers |
41 | paintings - art - modernist - artists - modern | 148 | 41_paintings_art_modernist_artists |
42 | workout - exercises - dumbbells - dumbbell - exercise | 147 | 42_workout_exercises_dumbbells_dumbbell |
43 | climate - warming - pollution - environmental - emissions | 142 | 43_climate_warming_pollution_environmental |
44 | coffee - espresso - brewing - tea - beans | 137 | 44_coffee_espresso_brewing_tea |
45 | velocity - drag - acceleration - density - formula | 132 | 45_velocity_drag_acceleration_density |
46 | woodchuck - woodchucks - units - kilogram - kilograms | 130 | 46_woodchuck_woodchucks_units_kilogram |
47 | ascii - glyphs - hiragana - art - font | 129 | 47_ascii_glyphs_hiragana_art |
48 | guitars - guitar - strings - guitarists - instrument | 127 | 48_guitars_guitar_strings_guitarists |
49 | tallest - buildings - building - burj - khalifa | 114 | 49_tallest_buildings_building_burj |
50 | flat - earth - curvature - spherical - tectonic | 111 | 50_flat_earth_curvature_spherical |
51 | essay - awareness - understanding - being - be | 102 | 51_essay_awareness_understanding_being |
52 | portals - ender - portal - obsidian - netherite | 102 | 52_portals_ender_portal_obsidian |
53 | android - apple - phones - devices - vehicles | 101 | 53_android_apple_phones_devices |
54 | fasting - dietary - diet - eating - metabolic | 101 | 54_fasting_dietary_diet_eating |
55 | meditation - relief - pain - health - nociception | 99 | 55_meditation_relief_pain_health |
56 | weather - forecast - forecasts - raining - precipitation | 95 | 56_weather_forecast_forecasts_raining |
57 | president - presidents - presidency - constitution - biden | 94 | 57_president_presidents_presidency_constitution |
58 | no - nope - yes - not - maybe | 94 | 58_no_nope_yes_not |
59 | peregrine - airspeed - falcon - speed - bird | 90 | 59_peregrine_airspeed_falcon_speed |
60 | crontab - cron - myscript - script - bash | 83 | 60_crontab_cron_myscript_script |
61 | youtuber - streamer - ceo - musk - founder | 83 | 61_youtuber_streamer_ceo_musk |
62 | layovers - flights - circumnavigate - layover - travel | 83 | 62_layovers_flights_circumnavigate_layover |
63 | keyboards - keyboard - switches - qwerty - types | 83 | 63_keyboards_keyboard_switches_qwerty |
64 | file_path_in_dir1 - file_path1 - csv_file - file_path_in_dir2 - file_path2 | 80 | 64_file_path_in_dir1_file_path1_csv_file_file_path_in_dir2 |
65 | pele - maradona - lebron - ronaldo - nba | 76 | 65_pele_maradona_lebron_ronaldo |
66 | alopecia - hairstyles - hairstyle - hair - scalp | 66 | 66_alopecia_hairstyles_hairstyle_hair |
67 | nginx - docker - kubernetes - proxy_pass - nodeport | 65 | 67_nginx_docker_kubernetes_proxy_pass |
68 | directories - directory - sudo - filesystem - folders | 62 | 68_directories_directory_sudo_filesystem |
69 | gps - map - geocaching - maps - armenia | 52 | 69_gps_map_geocaching_maps |
70 | meiosis - mitosis - fertilization - reproduction - ovulation | 51 | 70_meiosis_mitosis_fertilization_reproduction |
71 | colleges - admissions - universities - campus - university | 43 | 71_colleges_admissions_universities_campus |
72 | unicorns - unicorn - pony - ponies - mythical | 32 | 72_unicorns_unicorn_pony_ponies |
73 | superpowers - abilities - superhero - superhuman - powers | 28 | 73_superpowers_abilities_superhero_superhuman |
训练超参数
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 20
- n_gram_range: (1, 1)
- nr_topics: 75
- seed_topic_list: None
- top_n_words: 10
- verbose: True
框架版本
属性 | 详情 |
---|---|
模型类型 | BERTopic 主题建模模型 |
训练数据 | OpenAssistant/oasst1 |
Numpy 版本 | 1.22.4 |
HDBSCAN 版本 | 0.8.29 |
UMAP 版本 | 0.5.3 |
Pandas 版本 | 1.5.3 |
Scikit-Learn 版本 | 1.2.2 |
Sentence-transformers 版本 | 2.2.2 |
Transformers 版本 | 4.29.2 |
Numba 版本 | 0.56.4 |
Plotly 版本 | 5.13.1 |
Python 版本 | 3.10.11 |
📄 许可证
本项目采用 MIT 许可证。
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
基于DistilBERT-base-uncased在SST-2情感分析数据集上微调的文本分类模型,准确率91.3%
文本分类 英语
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
基于XLM-RoBERTa的多语言检测模型,支持20种语言的文本分类
文本分类
Transformers 支持多种语言

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
该模型通过动态生成数据集来改进在线仇恨检测,专注于从最差案例中学习以提高检测效果。
文本分类
Transformers 英语

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
基于bert-base-multilingual-uncased微调的多语言情感分析模型,支持6种语言的商品评论情感分析
文本分类 支持多种语言
B
nlptown
1.8M
371
Emotion English Distilroberta Base
基于DistilRoBERTa-base微调的英文文本情感分类模型,可预测埃克曼六种基本情绪及中性类别。
文本分类
Transformers 英语

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
基于RoBERTuito的西班牙语推文情感分析模型,支持POS(积极)/NEG(消极)/NEU(中性)三类情感分类
文本分类 西班牙语
R
pysentimiento
1.0M
88
Finbert Tone
FinBERT是一款基于金融通讯文本预训练的BERT模型,专注于金融自然语言处理领域。finbert-tone是其微调版本,用于金融情感分析任务。
文本分类
Transformers 英语

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
基于RoBERTa-base的多标签情感分类模型,在go_emotions数据集上训练,支持28种情感标签识别。
文本分类
Transformers 英语

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMO是一个基于XLM-T模型微调的多语言情感分析模型,支持19种语言,专门针对社交媒体文本的情感预测。
文本分类
Transformers 其他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
基于MultiNLI、Fever-NLI和ANLI数据集训练的DeBERTa-v3模型,擅长零样本分类和自然语言推理任务
文本分类
Transformers 英语

D
MoritzLaurer
613.93k
204
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98