Robertuito Sentiment Analysis
基于RoBERTuito的西班牙语推文情感分析模型,支持POS(积极)/NEG(消极)/NEU(中性)三类情感分类
下载量 1.0M
发布时间 : 3/2/2022
模型简介
该模型专门针对西班牙语社交媒体文本(特别是推文)进行情感分析,基于TASS 2020语料库训练,覆盖多种西班牙语方言。
模型特点
方言覆盖
训练数据包含多种西班牙语方言变体
社交媒体优化
基于RoBERTuito模型(专门在西班牙语推文上预训练)
轻量级部署
通过pysentimiento库可快速集成到应用
模型能力
西班牙语文本情感分类
社交媒体文本分析
多方言情感识别
使用案例
社交媒体监测
品牌舆情分析
分析西班牙语用户对品牌/产品的评价倾向
可识别70%以上的情感倾向(宏观F1 0.705)
市场调研
产品反馈分析
从西班牙语用户评论中提取产品改进建议
🚀 西班牙语情感分析
robertuito-sentiment-analysis
是一个用于西班牙语情感分析的模型。它使用 TASS 2020 语料库(约 5000 条推文)进行训练,涵盖了多种西班牙语方言。该模型基于 RoBERTuito,这是一个在西班牙语推文中预训练的 RoBERTa 模型,使用 POS
、NEG
、NEU
标签进行情感分类。
🚀 快速开始
安装
你可以直接使用 pysentimiento 库来调用该模型。
使用示例
from pysentimiento import create_analyzer
analyzer = create_analyzer(task="sentiment", lang="es")
analyzer.predict("Qué gran jugador es Messi")
# 返回 AnalyzerOutput(output=POS, probas={POS: 0.998, NEG: 0.002, NEU: 0.000})
✨ 主要特性
- 多方言支持:使用涵盖多种西班牙语方言的 TASS 2020 语料库进行训练,能处理不同方言的文本。
- 预训练模型:基于在西班牙语推文中预训练的 RoBERTuito 模型,具有良好的语言理解能力。
- 标准标签:使用
POS
、NEG
、NEU
标准标签,便于进行情感分类。
📚 详细文档
模型仓库
模型仓库地址:https://github.com/pysentimiento/pysentimiento/
评估结果
以下是 pysentimiento
中四个任务的评估结果,结果以宏 F1 分数表示:
模型 | 情感分析 | 仇恨言论检测 | 反讽检测 | 情感极性分析 |
---|---|---|---|---|
robertuito | 0.560 ± 0.010 | 0.759 ± 0.007 | 0.739 ± 0.005 | 0.705 ± 0.003 |
roberta | 0.527 ± 0.015 | 0.741 ± 0.012 | 0.721 ± 0.008 | 0.670 ± 0.006 |
bertin | 0.524 ± 0.007 | 0.738 ± 0.007 | 0.713 ± 0.012 | 0.666 ± 0.005 |
beto_uncased | 0.532 ± 0.012 | 0.727 ± 0.016 | 0.701 ± 0.007 | 0.651 ± 0.006 |
beto_cased | 0.516 ± 0.012 | 0.724 ± 0.012 | 0.705 ± 0.009 | 0.662 ± 0.005 |
mbert_uncased | 0.493 ± 0.010 | 0.718 ± 0.011 | 0.681 ± 0.010 | 0.617 ± 0.003 |
biGRU | 0.264 ± 0.007 | 0.592 ± 0.018 | 0.631 ± 0.011 | 0.585 ± 0.011 |
请注意,对于仇恨言论检测,这些是 Semeval 2019 任务 5 子任务 B 的结果。
📄 许可证
如果在你的研究中使用了该模型,请引用 pysentimiento
、RoBERTuito
和 TASS
的相关论文:
@article{perez2021pysentimiento,
title={pysentimiento: a python toolkit for opinion mining and social NLP tasks},
author={P{\'e}rez, Juan Manuel and Rajngewerc, Mariela and Giudici, Juan Carlos and Furman, Dami{\'a}n A and Luque, Franco and Alemany, Laura Alonso and Mart{\'\i}nez, Mar{\'\i}a Vanina},
journal={arXiv preprint arXiv:2106.09462},
year={2021}
}
@inproceedings{perez-etal-2022-robertuito,
title = "{R}o{BERT}uito: a pre-trained language model for social media text in {S}panish",
author = "P{\'e}rez, Juan Manuel and
Furman, Dami{\'a}n Ariel and
Alonso Alemany, Laura and
Luque, Franco M.",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.785",
pages = "7235--7243",
abstract = "Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for natural language processing tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks; however, for languages other than English, such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model has some cross-lingual abilities, achieving top results for English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and also competitive performance against monolingual models in English Twitter tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it.",
}
@inproceedings{garcia2020overview,
title={Overview of TASS 2020: Introducing emotion detection},
author={Garc{\'\i}a-Vega, Manuel and D{\'\i}az-Galiano, MC and Garc{\'\i}a-Cumbreras, MA and Del Arco, FMP and Montejo-R{\'a}ez, A and Jim{\'e}nez-Zafra, SM and Mart{\'\i}nez C{\'a}mara, E and Aguilar, CA and Cabezudo, MAS and Chiruzzo, L and others},
booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2020) Co-Located with 36th Conference of the Spanish Society for Natural Language Processing (SEPLN 2020), M{\'a}laga, Spain},
pages={163--170},
year={2020}
}
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
基于DistilBERT-base-uncased在SST-2情感分析数据集上微调的文本分类模型,准确率91.3%
文本分类 英语
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
基于XLM-RoBERTa的多语言检测模型,支持20种语言的文本分类
文本分类
Transformers 支持多种语言

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
该模型通过动态生成数据集来改进在线仇恨检测,专注于从最差案例中学习以提高检测效果。
文本分类
Transformers 英语

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
基于bert-base-multilingual-uncased微调的多语言情感分析模型,支持6种语言的商品评论情感分析
文本分类 支持多种语言
B
nlptown
1.8M
371
Emotion English Distilroberta Base
基于DistilRoBERTa-base微调的英文文本情感分类模型,可预测埃克曼六种基本情绪及中性类别。
文本分类
Transformers 英语

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
基于RoBERTuito的西班牙语推文情感分析模型,支持POS(积极)/NEG(消极)/NEU(中性)三类情感分类
文本分类 西班牙语
R
pysentimiento
1.0M
88
Finbert Tone
FinBERT是一款基于金融通讯文本预训练的BERT模型,专注于金融自然语言处理领域。finbert-tone是其微调版本,用于金融情感分析任务。
文本分类
Transformers 英语

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
基于RoBERTa-base的多标签情感分类模型,在go_emotions数据集上训练,支持28种情感标签识别。
文本分类
Transformers 英语

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMO是一个基于XLM-T模型微调的多语言情感分析模型,支持19种语言,专门针对社交媒体文本的情感预测。
文本分类
Transformers 其他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
基于MultiNLI、Fever-NLI和ANLI数据集训练的DeBERTa-v3模型,擅长零样本分类和自然语言推理任务
文本分类
Transformers 英语

D
MoritzLaurer
613.93k
204
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98