🚀 GENERator-eukaryote-3b-base模型
本項目推出的GENERator是一個生成式基因組基礎模型,其上下文長度可達98k個鹼基對,擁有30億個參數。該模型在包含3860億個真核生物DNA鹼基對的龐大數據集上進行訓練,豐富多樣的預訓練數據賦予了GENERator在不同生物體上更強的理解和生成能力。
🚀 快速開始
在本倉庫中,我們介紹了GENERator,這是一個生成式基因組基礎模型,上下文長度為98k個鹼基對,擁有30億個參數。它在包含3860億個真核生物DNA鹼基對的大規模數據集上進行訓練。廣泛且多樣的預訓練數據使GENERator在各種生物體上具備更強的理解和生成能力。
如需瞭解更多技術細節,請參考我們的論文 GENERator: A Long-Context Generative Genomic Foundation Model。代碼和實現細節可在Github上獲取:https://github.com/GenerTeam/GENERator。
💻 使用示例
基礎用法
示例1:生成
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
config = model.config
max_length = config.max_position_embeddings
sequences = [
"ATGAGGTGGCAAGAAATGGGCTAC",
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]
sequences = [tokenizer.bos_token + sequence for sequence in sequences]
tokenizer.padding_side = "left"
inputs = tokenizer(
sequences,
add_special_tokens=False,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
)
with torch.inference_mode():
outputs = model.generate(**inputs, max_new_tokens=32, temperature=0.00001, top_k=1)
decoded_sequences = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(decoded_sequences)
示例2:嵌入
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
config = model.config
max_length = config.max_position_embeddings
sequences = [
"ATGAGGTGGCAAGAAATGGGCTAC",
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]
tokenizer.padding_side = "right"
inputs = tokenizer(
sequences,
add_special_tokens=True,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
)
with torch.inference_mode():
outputs = model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
attention_mask = inputs["attention_mask"]
last_token_indices = attention_mask.sum(dim=1) - 1
seq_embeddings = []
for i, token_index in enumerate(last_token_indices):
seq_embedding = hidden_states[i, token_index, :]
seq_embeddings.append(seq_embedding)
seq_embeddings = torch.stack(seq_embeddings)
print("Sequence Embeddings:", seq_embeddings)
📄 許可證
本項目採用MIT許可證。
📚 引用
@misc{wu2025generator,
title={GENERator: A Long-Context Generative Genomic Foundation Model},
author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
year={2025},
eprint={2502.07272},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.07272},
}