🚀 GENERator-eukaryote-3b-base模型
本项目推出的GENERator是一个生成式基因组基础模型,其上下文长度可达98k个碱基对,拥有30亿个参数。该模型在包含3860亿个真核生物DNA碱基对的庞大数据集上进行训练,丰富多样的预训练数据赋予了GENERator在不同生物体上更强的理解和生成能力。
🚀 快速开始
在本仓库中,我们介绍了GENERator,这是一个生成式基因组基础模型,上下文长度为98k个碱基对,拥有30亿个参数。它在包含3860亿个真核生物DNA碱基对的大规模数据集上进行训练。广泛且多样的预训练数据使GENERator在各种生物体上具备更强的理解和生成能力。
如需了解更多技术细节,请参考我们的论文 GENERator: A Long-Context Generative Genomic Foundation Model。代码和实现细节可在Github上获取:https://github.com/GenerTeam/GENERator。
💻 使用示例
基础用法
示例1:生成
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
config = model.config
max_length = config.max_position_embeddings
sequences = [
"ATGAGGTGGCAAGAAATGGGCTAC",
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]
sequences = [tokenizer.bos_token + sequence for sequence in sequences]
tokenizer.padding_side = "left"
inputs = tokenizer(
sequences,
add_special_tokens=False,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
)
with torch.inference_mode():
outputs = model.generate(**inputs, max_new_tokens=32, temperature=0.00001, top_k=1)
decoded_sequences = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(decoded_sequences)
示例2:嵌入
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("GENERator-eukaryote-3b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("GenerTeam/GENERator-eukaryote-3b-base")
config = model.config
max_length = config.max_position_embeddings
sequences = [
"ATGAGGTGGCAAGAAATGGGCTAC",
"GAATTCCATGAGGCTATAGAATAATCTAAGAGAAAT"
]
tokenizer.padding_side = "right"
inputs = tokenizer(
sequences,
add_special_tokens=True,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
)
with torch.inference_mode():
outputs = model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
attention_mask = inputs["attention_mask"]
last_token_indices = attention_mask.sum(dim=1) - 1
seq_embeddings = []
for i, token_index in enumerate(last_token_indices):
seq_embedding = hidden_states[i, token_index, :]
seq_embeddings.append(seq_embedding)
seq_embeddings = torch.stack(seq_embeddings)
print("Sequence Embeddings:", seq_embeddings)
📄 许可证
本项目采用MIT许可证。
📚 引用
@misc{wu2025generator,
title={GENERator: A Long-Context Generative Genomic Foundation Model},
author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
year={2025},
eprint={2502.07272},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.07272},
}