🚀 垃圾郵件分類器
本模型基於microsoft/Multilingual-MiniLM-L12-H384
進行微調,用於將電子郵件主題分類為垃圾郵件(SPAM)或非垃圾郵件(NOSPAM)。
🚀 快速開始
本模型基於microsoft/Multilingual-MiniLM-L12-H384
進行微調,用於將電子郵件主題分類為垃圾郵件(SPAM)或非垃圾郵件(NOSPAM)。
💻 使用示例
基礎用法
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "Goodmotion/spam-mail-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(
model_name
)
text = "Félicitations ! Vous avez gagné un iPhone."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits)
高級用法
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "Goodmotion/spam-mail-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
texts = [
'Join us for a webinar on AI innovations',
'Urgent: Verify your account immediately.',
'Meeting rescheduled to 3 PM',
'Happy Birthday!',
'Limited time offer: Act now!',
'Join us for a webinar on AI innovations',
'Claim your free prize now!',
'You have unclaimed rewards waiting!',
'Weekly newsletter from Tech World',
'Update on the project status',
'Lunch tomorrow at 12:30?',
'Get rich quick with this amazing opportunity!',
'Invoice for your recent purchase',
'Don\'t forget: Gym session at 6 AM',
'Join us for a webinar on AI innovations',
'bonjour comment allez vous ?',
'Documents suite à notre rendez-vous',
'Valentin Dupond mentioned you in a comment',
'Bolt x Supabase = 🤯',
'Modification site web de la société',
'Image de mise en avant sur les articles',
'Bring new visitors to your site',
'Le Cloud Éthique sans bullshit',
'Remix Newsletter #25: React Router v7',
'Votre essai auprès de X va bientôt prendre fin',
'Introducing a Google Docs integration, styles and more in Claude.ai',
'Carte de crédit sur le point d’expirer sur Cloudflare'
]
inputs = tokenizer(texts, padding=True, truncation=True, max_length=128, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)
labels = ["NOSPAM", "SPAM"]
results = [
{"text": text, "label": labels[torch.argmax(prob).item()], "confidence": prob.max().item()}
for text, prob in zip(texts, probabilities)
]
for result in results:
print(f"Texte : {result['text']}")
print(f"Résultat : {result['label']} (Confiance : {result['confidence']:.2%})\n")
📚 詳細文檔
模型詳情
屬性 |
詳情 |
基礎模型 |
microsoft/Multilingual-MiniLM-L12-H384 |
微調任務 |
文本分類 |
類別數量 |
2(垃圾郵件,非垃圾郵件) |
支持語言 |
多語言 |
📄 許可證
本項目採用Apache-2.0許可證。