🚀 bart-faithful-summary-detector
這是一個用於文本分類的模型,可對摘要是否忠實於原文進行分類判斷。它基於BART(基礎)模型進行訓練,能有效識別摘要與原文的忠實度關係。
🚀 快速開始
本模型可用於判斷摘要是否忠實於原文。使用時,將摘要和源文檔拼接作為輸入(注意,摘要需要是第一句)。
✨ 主要特性
- 基於BART(基礎)模型訓練,用於分類判斷摘要是否忠實於原文。
- 詳細信息可查看我們發表於 NAACL'21的論文。
📦 安裝指南
暫未提供相關安裝步驟。
💻 使用示例
基礎用法
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("CogComp/bart-faithful-summary-detector")
model = AutoModelForSequenceClassification.from_pretrained("CogComp/bart-faithful-summary-detector")
article = "Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011."
bad_summary = "Ban Ki-moon was elected for a second term in 2007."
good_summary = "Ban Ki-moon was elected for a second term in 2011."
bad_pair = tokenizer(text=bad_summary, text_pair=article, return_tensors='pt')
good_pair = tokenizer(text=good_summary, text_pair=article, return_tensors='pt')
bad_score = model(**bad_pair)
good_score = model(**good_pair)
print(good_score[0][:, 1] > bad_score[0][:, 1])
📚 詳細文檔
本模型將摘要和源文檔拼接作為輸入,其中摘要需為第一句。通過模型計算得分,根據得分判斷摘要是否忠實於原文。標籤映射為:"0" 表示 "虛假信息","1" 表示 "忠實原文"。
📄 許可證
本項目採用 cc-by-sa-4.0
許可證。
BibTeX引用信息
@inproceedings{CZSR21,
author = {Sihao Chen and Fan Zhang and Kazoo Sone and Dan Roth},
title = {{Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection}},
booktitle = {NAACL},
year = {2021}
}