🚀 bart-faithful-summary-detector
这是一个用于文本分类的模型,可对摘要是否忠实于原文进行分类判断。它基于BART(基础)模型进行训练,能有效识别摘要与原文的忠实度关系。
🚀 快速开始
本模型可用于判断摘要是否忠实于原文。使用时,将摘要和源文档拼接作为输入(注意,摘要需要是第一句)。
✨ 主要特性
- 基于BART(基础)模型训练,用于分类判断摘要是否忠实于原文。
- 详细信息可查看我们发表于 NAACL'21的论文。
📦 安装指南
暂未提供相关安装步骤。
💻 使用示例
基础用法
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("CogComp/bart-faithful-summary-detector")
model = AutoModelForSequenceClassification.from_pretrained("CogComp/bart-faithful-summary-detector")
article = "Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011."
bad_summary = "Ban Ki-moon was elected for a second term in 2007."
good_summary = "Ban Ki-moon was elected for a second term in 2011."
bad_pair = tokenizer(text=bad_summary, text_pair=article, return_tensors='pt')
good_pair = tokenizer(text=good_summary, text_pair=article, return_tensors='pt')
bad_score = model(**bad_pair)
good_score = model(**good_pair)
print(good_score[0][:, 1] > bad_score[0][:, 1])
📚 详细文档
本模型将摘要和源文档拼接作为输入,其中摘要需为第一句。通过模型计算得分,根据得分判断摘要是否忠实于原文。标签映射为:"0" 表示 "虚假信息","1" 表示 "忠实原文"。
📄 许可证
本项目采用 cc-by-sa-4.0
许可证。
BibTeX引用信息
@inproceedings{CZSR21,
author = {Sihao Chen and Fan Zhang and Kazoo Sone and Dan Roth},
title = {{Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection}},
booktitle = {NAACL},
year = {2021}
}