🚀 俄語敏感話題分類模型
本模型用於對俄語敏感話題進行分類,可預測18種敏感話題的組合。它基於擴展的俄語敏感話題數據集進行訓練,能助力檢測可能損害公司聲譽的不當信息。
🚀 快速開始
該模型可預測文章中描述的18種敏感話題的組合。你可以在此處找到使用該模型的詳細步驟說明。
✨ 主要特性
- 針對性訓練:在俄語敏感話題數據集上進行訓練,能精準識別特定敏感話題。
- 多話題預測:可預測18種敏感話題的組合,滿足多樣化檢測需求。
📚 詳細文檔
模型概述
此模型在俄語敏感話題數據集上進行訓練。敏感話題的概念在這篇文章中有詳細描述,該文章於EACL - 2021會議的波羅的海 - 斯拉夫語自然語言處理研討會上發表。需注意,文章描述的是數據集的第一版,而模型是基於擴展版本的數據集進行訓練的,該擴展數據集已在我們的GitHub或kaggle上開源。數據集的特性與文章中描述的一致,僅規模有所不同。
評估指標
數據集部分樣本為手動標註,部分為半自動標註,更多信息可查看我們的文章。我們僅在手動標註的數據部分測試了分類器的性能,因此部分話題在測試集中的代表性不足。
屬性 |
詳情 |
模型類型 |
俄語敏感話題分類模型 |
訓練數據 |
俄語敏感話題擴展數據集 |
話題 |
精確率 |
召回率 |
F1分數 |
樣本數 |
offline_crime |
0.65 |
0.55 |
0.6 |
132 |
online_crime |
0.5 |
0.46 |
0.48 |
37 |
drugs |
0.87 |
0.9 |
0.88 |
87 |
gambling |
0.5 |
0.67 |
0.57 |
6 |
pornography |
0.73 |
0.59 |
0.65 |
204 |
prostitution |
0.75 |
0.69 |
0.72 |
91 |
slavery |
0.72 |
0.72 |
0.73 |
40 |
suicide |
0.33 |
0.29 |
0.31 |
7 |
terrorism |
0.68 |
0.57 |
0.62 |
47 |
weapons |
0.89 |
0.83 |
0.86 |
138 |
body_shaming |
0.9 |
0.67 |
0.77 |
109 |
health_shaming |
0.84 |
0.55 |
0.66 |
108 |
politics |
0.68 |
0.54 |
0.6 |
241 |
racism |
0.81 |
0.59 |
0.68 |
204 |
religion |
0.94 |
0.72 |
0.81 |
102 |
sexual_minorities |
0.69 |
0.46 |
0.55 |
102 |
sexism |
0.66 |
0.64 |
0.65 |
132 |
social_injustice |
0.56 |
0.37 |
0.45 |
181 |
none |
0.62 |
0.67 |
0.64 |
250 |
微平均 |
0.72 |
0.61 |
0.66 |
2218 |
宏平均 |
0.7 |
0.6 |
0.64 |
2218 |
加權平均 |
0.73 |
0.61 |
0.66 |
2218 |
樣本平均 |
0.75 |
0.66 |
0.68 |
2218 |
📄 許可證
本項目採用知識共享署名 - 非商業性使用 - 相同方式共享 4.0 國際許可協議。

🔖 引用
如果您覺得這個倉庫有幫助,請引用我們的論文:
@inproceedings{babakov-etal-2021-detecting,
title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation",
author = "Babakov, Nikolay and
Logacheva, Varvara and
Kozlova, Olga and
Semenov, Nikita and
Panchenko, Alexander",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4",
pages = "26--36",
abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.",
}