🚀 俄语敏感话题分类模型
本模型用于对俄语敏感话题进行分类,可预测18种敏感话题的组合。它基于扩展的俄语敏感话题数据集进行训练,能助力检测可能损害公司声誉的不当信息。
🚀 快速开始
该模型可预测文章中描述的18种敏感话题的组合。你可以在此处找到使用该模型的详细步骤说明。
✨ 主要特性
- 针对性训练:在俄语敏感话题数据集上进行训练,能精准识别特定敏感话题。
- 多话题预测:可预测18种敏感话题的组合,满足多样化检测需求。
📚 详细文档
模型概述
此模型在俄语敏感话题数据集上进行训练。敏感话题的概念在这篇文章中有详细描述,该文章于EACL - 2021会议的波罗的海 - 斯拉夫语自然语言处理研讨会上发表。需注意,文章描述的是数据集的第一版,而模型是基于扩展版本的数据集进行训练的,该扩展数据集已在我们的GitHub或kaggle上开源。数据集的特性与文章中描述的一致,仅规模有所不同。
评估指标
数据集部分样本为手动标注,部分为半自动标注,更多信息可查看我们的文章。我们仅在手动标注的数据部分测试了分类器的性能,因此部分话题在测试集中的代表性不足。
属性 |
详情 |
模型类型 |
俄语敏感话题分类模型 |
训练数据 |
俄语敏感话题扩展数据集 |
话题 |
精确率 |
召回率 |
F1分数 |
样本数 |
offline_crime |
0.65 |
0.55 |
0.6 |
132 |
online_crime |
0.5 |
0.46 |
0.48 |
37 |
drugs |
0.87 |
0.9 |
0.88 |
87 |
gambling |
0.5 |
0.67 |
0.57 |
6 |
pornography |
0.73 |
0.59 |
0.65 |
204 |
prostitution |
0.75 |
0.69 |
0.72 |
91 |
slavery |
0.72 |
0.72 |
0.73 |
40 |
suicide |
0.33 |
0.29 |
0.31 |
7 |
terrorism |
0.68 |
0.57 |
0.62 |
47 |
weapons |
0.89 |
0.83 |
0.86 |
138 |
body_shaming |
0.9 |
0.67 |
0.77 |
109 |
health_shaming |
0.84 |
0.55 |
0.66 |
108 |
politics |
0.68 |
0.54 |
0.6 |
241 |
racism |
0.81 |
0.59 |
0.68 |
204 |
religion |
0.94 |
0.72 |
0.81 |
102 |
sexual_minorities |
0.69 |
0.46 |
0.55 |
102 |
sexism |
0.66 |
0.64 |
0.65 |
132 |
social_injustice |
0.56 |
0.37 |
0.45 |
181 |
none |
0.62 |
0.67 |
0.64 |
250 |
微平均 |
0.72 |
0.61 |
0.66 |
2218 |
宏平均 |
0.7 |
0.6 |
0.64 |
2218 |
加权平均 |
0.73 |
0.61 |
0.66 |
2218 |
样本平均 |
0.75 |
0.66 |
0.68 |
2218 |
📄 许可证
本项目采用知识共享署名 - 非商业性使用 - 相同方式共享 4.0 国际许可协议。

🔖 引用
如果您觉得这个仓库有帮助,请引用我们的论文:
@inproceedings{babakov-etal-2021-detecting,
title = "Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company{'}s Reputation",
author = "Babakov, Nikolay and
Logacheva, Varvara and
Kozlova, Olga and
Semenov, Nikita and
Panchenko, Alexander",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.4",
pages = "26--36",
abstract = "Not all topics are equally {``}flammable{''} in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labelling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labelled dataset and an appropriateness-labelled dataset. We also release pre-trained classification models trained on this data.",
}