🚀 DareBeagle-7B
DareBeagle-7B 是一個融合模型,它使用 LazyMergekit 融合了以下模型,在文本生成任務中展現出了優秀的性能。
🚀 快速開始
安裝依賴
!pip install -qU transformers accelerate
代碼示例
from transformers import AutoTokenizer
import transformers
import torch
model = "shadowml/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
✨ 主要特性
DareBeagle-7B 是通過融合以下兩個模型得到的:
📦 安裝指南
使用以下命令安裝所需的庫:
!pip install -qU transformers accelerate
💻 使用示例
基礎用法
from transformers import AutoTokenizer
import transformers
import torch
model = "shadowml/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
📚 詳細文檔
🧩 配置信息
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 32]
- model: mlabonne/NeuralDaredevil-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralDaredevil-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.45
dtype: float16
詳細結果可查看 此處
指標 |
值 |
平均值 |
74.58 |
AI2 推理挑戰 (25 次少樣本學習) |
71.67 |
HellaSwag (10 次少樣本學習) |
88.01 |
MMLU (5 次少樣本學習) |
65.03 |
TruthfulQA (0 次少樣本學習) |
68.98 |
Winogrande (5 次少樣本學習) |
82.32 |
GSM8k (5 次少樣本學習) |
71.49 |
📄 許可證
本項目採用 Apache-2.0 許可證。