🚀 DareBeagle-7B
DareBeagle-7B 是一个融合模型,它使用 LazyMergekit 融合了以下模型,在文本生成任务中展现出了优秀的性能。
🚀 快速开始
安装依赖
!pip install -qU transformers accelerate
代码示例
from transformers import AutoTokenizer
import transformers
import torch
model = "shadowml/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
✨ 主要特性
DareBeagle-7B 是通过融合以下两个模型得到的:
📦 安装指南
使用以下命令安装所需的库:
!pip install -qU transformers accelerate
💻 使用示例
基础用法
from transformers import AutoTokenizer
import transformers
import torch
model = "shadowml/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
📚 详细文档
🧩 配置信息
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 32]
- model: mlabonne/NeuralDaredevil-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralDaredevil-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.45
dtype: float16
详细结果可查看 此处
指标 |
值 |
平均值 |
74.58 |
AI2 推理挑战 (25 次少样本学习) |
71.67 |
HellaSwag (10 次少样本学习) |
88.01 |
MMLU (5 次少样本学习) |
65.03 |
TruthfulQA (0 次少样本学习) |
68.98 |
Winogrande (5 次少样本学习) |
82.32 |
GSM8k (5 次少样本学习) |
71.49 |
📄 许可证
本项目采用 Apache-2.0 许可证。