🚀 flan-t5-base-opus-en-id-id-en
該模型專為實現印尼語和英語之間的多模態翻譯而設計,能夠高效準確地完成兩種語言的互譯任務。
🚀 快速開始
此模型可用於印尼語和英語之間的翻譯。以下是使用該模型進行翻譯的示例。
✨ 主要特性
- 專為印尼語和英語的多模態翻譯而設計。
- 支持在CPU、GPU上運行,還支持不同的精度設置。
📦 安裝指南
運行代碼示例前,請確保安裝了必要的庫:
pip install transformers accelerate bitsandbytes datasets tokenizers torch
💻 使用示例
基礎用法
在CPU上運行模型
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
高級用法
在GPU上運行模型
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
在GPU上使用不同精度運行模型
FP16
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-ene")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", torch_dtype=torch.float16)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
INT8
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", load_in_8bit=True)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
📚 詳細文檔
模型詳情
模型描述
屬性 |
詳情 |
模型類型 |
語言模型 |
語言 |
英語、印尼語 |
許可證 |
Apache 2.0 |
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
得分 |
計數 |
總數 |
準確率 |
懲罰因子 |
系統長度 |
參考長度 |
生成長度 |
1.6959 |
0.55 |
4000 |
1.5776 |
30.6542 |
[4414, 2368, 1345, 733] |
[7417, 6417, 5426, 4519] |
[59.511932047997846, 36.9019791179679, 24.78805750092149, 16.220402743969906] |
1.0 |
7417 |
7354 |
10.77 |
1.4378 |
1.11 |
8000 |
1.4527 |
32.3772 |
[4526, 2538, 1483, 834] |
[7567, 6567, 5576, 4666] |
[59.81234306858729, 38.647784376427595, 26.596126255380202, 17.873981997428203] |
1.0 |
7567 |
7354 |
10.885 |
1.3904 |
1.66 |
12000 |
1.3961 |
33.8978 |
[4558, 2559, 1494, 836] |
[7286, 6286, 5295, 4383] |
[62.55833104584134, 40.70951320394528, 28.21529745042493, 19.073693817020306] |
0.9907 |
7286 |
7354 |
10.569 |
1.3035 |
2.21 |
16000 |
1.3758 |
34.9471 |
[4609, 2628, 1546, 880] |
[7297, 6297, 5306, 4392] |
[63.16294367548308, 41.73415912339209, 29.136826234451565, 20.036429872495447] |
0.9922 |
7297 |
7354 |
10.591 |
1.2994 |
2.77 |
20000 |
1.3685 |
35.0259 |
[4617, 2627, 1550, 883] |
[7288, 6288, 5297, 4382] |
[63.350713501646545, 41.777989821882954, 29.261846328110252, 20.150616157005935] |
0.991 |
7288 |
7354 |
10.556 |
框架版本
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
📄 許可證
本模型使用Apache 2.0許可證。