🚀 flan-t5-base-opus-en-id-id-en
该模型专为实现印尼语和英语之间的多模态翻译而设计,能够高效准确地完成两种语言的互译任务。
🚀 快速开始
此模型可用于印尼语和英语之间的翻译。以下是使用该模型进行翻译的示例。
✨ 主要特性
- 专为印尼语和英语的多模态翻译而设计。
- 支持在CPU、GPU上运行,还支持不同的精度设置。
📦 安装指南
运行代码示例前,请确保安装了必要的库:
pip install transformers accelerate bitsandbytes datasets tokenizers torch
💻 使用示例
基础用法
在CPU上运行模型
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
高级用法
在GPU上运行模型
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto")
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
在GPU上使用不同精度运行模型
FP16
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-ene")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", torch_dtype=torch.float16)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
INT8
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en")
model = T5ForConditionalGeneration.from_pretrained("muvazana/flan-t5-base-opus-en-id-id-en", device_map="auto", load_in_8bit=True)
input_text = "translate English to Indonesia: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
📚 详细文档
模型详情
模型描述
属性 |
详情 |
模型类型 |
语言模型 |
语言 |
英语、印尼语 |
许可证 |
Apache 2.0 |
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
得分 |
计数 |
总数 |
准确率 |
惩罚因子 |
系统长度 |
参考长度 |
生成长度 |
1.6959 |
0.55 |
4000 |
1.5776 |
30.6542 |
[4414, 2368, 1345, 733] |
[7417, 6417, 5426, 4519] |
[59.511932047997846, 36.9019791179679, 24.78805750092149, 16.220402743969906] |
1.0 |
7417 |
7354 |
10.77 |
1.4378 |
1.11 |
8000 |
1.4527 |
32.3772 |
[4526, 2538, 1483, 834] |
[7567, 6567, 5576, 4666] |
[59.81234306858729, 38.647784376427595, 26.596126255380202, 17.873981997428203] |
1.0 |
7567 |
7354 |
10.885 |
1.3904 |
1.66 |
12000 |
1.3961 |
33.8978 |
[4558, 2559, 1494, 836] |
[7286, 6286, 5295, 4383] |
[62.55833104584134, 40.70951320394528, 28.21529745042493, 19.073693817020306] |
0.9907 |
7286 |
7354 |
10.569 |
1.3035 |
2.21 |
16000 |
1.3758 |
34.9471 |
[4609, 2628, 1546, 880] |
[7297, 6297, 5306, 4392] |
[63.16294367548308, 41.73415912339209, 29.136826234451565, 20.036429872495447] |
0.9922 |
7297 |
7354 |
10.591 |
1.2994 |
2.77 |
20000 |
1.3685 |
35.0259 |
[4617, 2627, 1550, 883] |
[7288, 6288, 5297, 4382] |
[63.350713501646545, 41.777989821882954, 29.261846328110252, 20.150616157005935] |
0.991 |
7288 |
7354 |
10.556 |
框架版本
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
📄 许可证
本模型使用Apache 2.0许可证。