Wsj0 2mix Skim Small Causal
模型概述
該模型採用skim架構,具有因果性處理能力,適用於即時語音增強場景,能夠有效分離混合語音中的不同說話人信號。
模型特點
因果處理能力
模型採用因果結構設計,適合即時語音處理應用場景
輕量級架構
小型skim架構設計,在保持性能的同時降低計算複雜度
多說話人分離
能夠有效分離混合語音中的兩個說話人信號
模型能力
語音增強
說話人分離
即時語音處理
使用案例
語音通信
會議語音增強
在多人會議場景中分離不同說話人的聲音
STOI指標達到94.20,SDR指標14.33
語音識別預處理
ASR前端處理
為語音識別系統提供更乾淨的輸入信號
可提升語音識別系統在嘈雜環境中的準確率
🚀 ESPnet2 ENH模型
本模型是一個音頻增強模型,基於ESPnet框架訓練,使用wsj0_2mix數據集,可用於音頻到音頻的處理任務。
🚀 快速開始
安裝ESPnet
若你還未安裝ESPnet,請按照ESPnet安裝說明進行操作。
運行示例
cd espnet
git checkout 3897ed8380bfb526d5c5dd2197eccbffbba7d8f8
pip install -e .
cd egs2/wsj0_2mix/enh1
./run.sh --skip_data_prep false --skip_train true --download_model lichenda/wsj0_2mix_skim_small_causal
📚 詳細文檔
模型訓練信息
此模型由李辰達(Chenda Li)使用espnet中的wsj0_2mix配方進行訓練。
實驗結果
環境信息
- 日期:
Wed May 10 20:30:26 CST 2023
- Python版本:
3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0]
- ESPnet版本:
espnet 202304
- PyTorch版本:
pytorch 2.0.1
- Git哈希值:
3897ed8380bfb526d5c5dd2197eccbffbba7d8f8
- 提交日期:
Tue May 9 13:27:37 2023 +0800
- 提交日期:
評估指標
數據集 | STOI | SAR | SDR | SIR | SI_SNR |
---|---|---|---|---|---|
enhanced_cv_min_8k | 93.41 | 15.54 | 14.92 | 24.87 | 14.51 |
enhanced_tt_min_8k | 94.20 | 15.00 | 14.33 | 24.18 | 13.92 |
增強配置
展開
config: conf/tuning/train_enh_skim_causal_small.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp/enh_train_enh_skim_causal_small_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 150
patience: 50
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- si_snr_loss
- min
- - valid
- loss
- min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 16
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_8k/train/speech_mix_shape
- exp/enh_stats_8k/train/speech_ref1_shape
- exp/enh_stats_8k/train/speech_ref2_shape
valid_shape_file:
- exp/enh_stats_8k/valid/speech_mix_shape
- exp/enh_stats_8k/valid/speech_ref1_shape
- exp/enh_stats_8k/valid/speech_ref2_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 32000,16000,8000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
train_data_path_and_name_and_type:
- - dump/raw/tr_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/tr_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/tr_min_8k/spk2.scp
- speech_ref2
- sound
valid_data_path_and_name_and_type:
- - dump/raw/cv_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/cv_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/cv_min_8k/spk2.scp
- speech_ref2
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-08
weight_decay: 0
scheduler: steplr
scheduler_conf:
step_size: 2
gamma: 0.97
init: xavier_uniform
model_conf:
stft_consistency: false
loss_type: mask_mse
mask_type: null
criterions:
- name: si_snr
conf: {}
wrapper: pit
wrapper_conf:
weight: 1.0
independent_perm: true
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
use_reverberant_ref: false
num_spk: 1
num_noise_type: 1
sample_rate: 8000
force_single_channel: false
dynamic_mixing: false
utt2spk: null
dynamic_mixing_gain_db: 0.0
encoder: conv
encoder_conf:
channel: 128
kernel_size: 8
stride: 4
separator: skim
separator_conf:
causal: true
num_spk: 2
layer: 3
nonlinear: relu
unit: 384
segment_size: 50
dropout: 0.0
mem_type: hc
seg_overlap: false
decoder: conv
decoder_conf:
channel: 128
kernel_size: 8
stride: 4
mask_module: multi_mask
mask_module_conf: {}
preprocessor: null
preprocessor_conf: {}
required:
- output_dir
version: '202304'
distributed: false
引用ESPnet
如果你在研究中使用了ESPnet,請引用以下文獻:
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{ESPnet-SE,
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
pages = {785--792},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/SLT48900.2021.9383615},
doi = {10.1109/SLT48900.2021.9383615},
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{liSkimSkippingMemory2022,
title = {Skim: {{Skipping Memory Lstm}} for {{Low-Latency Real-Time Continuous Speech Separation}}},
shorttitle = {Skim},
booktitle = {{{ICASSP}} 2022 - 2022 {{IEEE International Conference}} on {{Acoustics}}, {{Speech}} and {{Signal Processing}} ({{ICASSP}})},
author = {Li, Chenda and Yang, Lei and Wang, Weiqin and Qian, Yanmin},
year = {2022},
month = may,
pages = {681--685},
issn = {2379-190X},
doi = {10.1109/ICASSP43922.2022.9746372},
}
或者引用arXiv上的文獻:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📄 許可證
本項目採用CC BY 4.0許可證。
Metricgan Plus Voicebank
Apache-2.0
這是一個使用MetricGAN+方法訓練的語音增強模型,能夠有效提升語音質量。
音頻增強 英語
M
speechbrain
55.91k
65
Mtl Mimic Voicebank
Apache-2.0
基於SpeechBrain的語音增強與魯棒性ASR訓練系統,採用模仿損失訓練策略
音頻增強 英語
M
speechbrain
11.11k
35
Dccrnet Libri1Mix Enhsingle 16k
基於Asteroid框架訓練的DCCRN-CL架構語音增強模型,專為單通道語音增強任務設計,在Libri1Mix數據集上訓練。
音頻增強
PyTorch
D
JorisCos
10.99k
16
Sepformer Wham16k Enhancement
Apache-2.0
這是一個使用SepFormer架構的語音增強模型,專門用於去除音頻中的噪聲和混響,在WHAM!數據集上以16kHz採樣頻率訓練。
音頻增強
PyTorch 英語
S
speechbrain
5,140
28
Dprnntasnet Ks2 Libri1Mix Enhsingle 16k
基於Asteroid框架訓練的音頻增強模型,專為單通道語音增強任務設計,在Libri1Mix數據集上訓練。
音頻增強
PyTorch
D
JorisCos
4,859
1
Dptnet Libri1Mix Enhsingle 16k
基於Asteroid框架訓練的音頻增強模型,專注於單聲道語音增強任務
音頻增強
PyTorch
D
JorisCos
4,446
3
Convtasnet Libri1Mix Enhsingle 16k
基於Asteroid框架訓練的ConvTasNet模型,用於單通道語音增強任務,在Libri1Mix數據集上訓練。
音頻增強
PyTorch
C
JorisCos
2,570
3
Sepformer Dns4 16k Enhancement
Apache-2.0
這是一個基於SepFormer架構的語音增強模型,專門用於去噪任務,在微軟DNS-4數據集上訓練,支持16kHz採樣頻率的音頻處理。
音頻增強
PyTorch 支持多種語言
S
speechbrain
1,669
20
Sepformer Wham Enhancement
Apache-2.0
使用SepFormer模型進行語音增強(去噪)的工具集,在WHAM!數據集(8kHz採樣頻率版本)上預訓練,實現環境噪聲和混響的去除。
音頻增強
PyTorch 英語
S
speechbrain
827
23
MP SENet DNS
MIT
一個基於Pytorch的音頻去噪和語音增強模型,有效去除音頻噪聲提升語音清晰度
音頻增強
Safetensors
M
JacobLinCool
723
1
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98