Wsj0 2mix Skim Small Causal
模型简介
该模型采用skim架构,具有因果性处理能力,适用于实时语音增强场景,能够有效分离混合语音中的不同说话人信号。
模型特点
因果处理能力
模型采用因果结构设计,适合实时语音处理应用场景
轻量级架构
小型skim架构设计,在保持性能的同时降低计算复杂度
多说话人分离
能够有效分离混合语音中的两个说话人信号
模型能力
语音增强
说话人分离
实时语音处理
使用案例
语音通信
会议语音增强
在多人会议场景中分离不同说话人的声音
STOI指标达到94.20,SDR指标14.33
语音识别预处理
ASR前端处理
为语音识别系统提供更干净的输入信号
可提升语音识别系统在嘈杂环境中的准确率
🚀 ESPnet2 ENH模型
本模型是一个音频增强模型,基于ESPnet框架训练,使用wsj0_2mix数据集,可用于音频到音频的处理任务。
🚀 快速开始
安装ESPnet
若你还未安装ESPnet,请按照ESPnet安装说明进行操作。
运行示例
cd espnet
git checkout 3897ed8380bfb526d5c5dd2197eccbffbba7d8f8
pip install -e .
cd egs2/wsj0_2mix/enh1
./run.sh --skip_data_prep false --skip_train true --download_model lichenda/wsj0_2mix_skim_small_causal
📚 详细文档
模型训练信息
此模型由李辰达(Chenda Li)使用espnet中的wsj0_2mix配方进行训练。
实验结果
环境信息
- 日期:
Wed May 10 20:30:26 CST 2023
- Python版本:
3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0]
- ESPnet版本:
espnet 202304
- PyTorch版本:
pytorch 2.0.1
- Git哈希值:
3897ed8380bfb526d5c5dd2197eccbffbba7d8f8
- 提交日期:
Tue May 9 13:27:37 2023 +0800
- 提交日期:
评估指标
数据集 | STOI | SAR | SDR | SIR | SI_SNR |
---|---|---|---|---|---|
enhanced_cv_min_8k | 93.41 | 15.54 | 14.92 | 24.87 | 14.51 |
enhanced_tt_min_8k | 94.20 | 15.00 | 14.33 | 24.18 | 13.92 |
增强配置
展开
config: conf/tuning/train_enh_skim_causal_small.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: chunk
output_dir: exp/enh_train_enh_skim_causal_small_raw
ngpu: 1
seed: 0
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 150
patience: 50
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- si_snr_loss
- min
- - valid
- loss
- min
keep_nbest_models: 1
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 16
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/enh_stats_8k/train/speech_mix_shape
- exp/enh_stats_8k/train/speech_ref1_shape
- exp/enh_stats_8k/train/speech_ref2_shape
valid_shape_file:
- exp/enh_stats_8k/valid/speech_mix_shape
- exp/enh_stats_8k/valid/speech_ref1_shape
- exp/enh_stats_8k/valid/speech_ref2_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 80000
- 80000
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 32000,16000,8000
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
train_data_path_and_name_and_type:
- - dump/raw/tr_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/tr_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/tr_min_8k/spk2.scp
- speech_ref2
- sound
valid_data_path_and_name_and_type:
- - dump/raw/cv_min_8k/wav.scp
- speech_mix
- sound
- - dump/raw/cv_min_8k/spk1.scp
- speech_ref1
- sound
- - dump/raw/cv_min_8k/spk2.scp
- speech_ref2
- sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.001
eps: 1.0e-08
weight_decay: 0
scheduler: steplr
scheduler_conf:
step_size: 2
gamma: 0.97
init: xavier_uniform
model_conf:
stft_consistency: false
loss_type: mask_mse
mask_type: null
criterions:
- name: si_snr
conf: {}
wrapper: pit
wrapper_conf:
weight: 1.0
independent_perm: true
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
use_reverberant_ref: false
num_spk: 1
num_noise_type: 1
sample_rate: 8000
force_single_channel: false
dynamic_mixing: false
utt2spk: null
dynamic_mixing_gain_db: 0.0
encoder: conv
encoder_conf:
channel: 128
kernel_size: 8
stride: 4
separator: skim
separator_conf:
causal: true
num_spk: 2
layer: 3
nonlinear: relu
unit: 384
segment_size: 50
dropout: 0.0
mem_type: hc
seg_overlap: false
decoder: conv
decoder_conf:
channel: 128
kernel_size: 8
stride: 4
mask_module: multi_mask
mask_module_conf: {}
preprocessor: null
preprocessor_conf: {}
required:
- output_dir
version: '202304'
distributed: false
引用ESPnet
如果你在研究中使用了ESPnet,请引用以下文献:
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{ESPnet-SE,
author = {Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and
Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph B{"{o}}ddeker and Zhuo Chen and Shinji Watanabe},
title = {ESPnet-SE: End-To-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
booktitle = {{IEEE} Spoken Language Technology Workshop, {SLT} 2021, Shenzhen, China, January 19-22, 2021},
pages = {785--792},
publisher = {{IEEE}},
year = {2021},
url = {https://doi.org/10.1109/SLT48900.2021.9383615},
doi = {10.1109/SLT48900.2021.9383615},
timestamp = {Mon, 12 Apr 2021 17:08:59 +0200},
biburl = {https://dblp.org/rec/conf/slt/Li0ZSCKHHBC021.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{liSkimSkippingMemory2022,
title = {Skim: {{Skipping Memory Lstm}} for {{Low-Latency Real-Time Continuous Speech Separation}}},
shorttitle = {Skim},
booktitle = {{{ICASSP}} 2022 - 2022 {{IEEE International Conference}} on {{Acoustics}}, {{Speech}} and {{Signal Processing}} ({{ICASSP}})},
author = {Li, Chenda and Yang, Lei and Wang, Weiqin and Qian, Yanmin},
year = {2022},
month = may,
pages = {681--685},
issn = {2379-190X},
doi = {10.1109/ICASSP43922.2022.9746372},
}
或者引用arXiv上的文献:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📄 许可证
本项目采用CC BY 4.0许可证。
Metricgan Plus Voicebank
Apache-2.0
这是一个使用MetricGAN+方法训练的语音增强模型,能够有效提升语音质量。
音频增强 英语
M
speechbrain
55.91k
65
Mtl Mimic Voicebank
Apache-2.0
基于SpeechBrain的语音增强与鲁棒性ASR训练系统,采用模仿损失训练策略
音频增强 英语
M
speechbrain
11.11k
35
Dccrnet Libri1Mix Enhsingle 16k
基于Asteroid框架训练的DCCRN-CL架构语音增强模型,专为单通道语音增强任务设计,在Libri1Mix数据集上训练。
音频增强
PyTorch
D
JorisCos
10.99k
16
Sepformer Wham16k Enhancement
Apache-2.0
这是一个使用SepFormer架构的语音增强模型,专门用于去除音频中的噪声和混响,在WHAM!数据集上以16kHz采样频率训练。
音频增强
PyTorch 英语
S
speechbrain
5,140
28
Dprnntasnet Ks2 Libri1Mix Enhsingle 16k
基于Asteroid框架训练的音频增强模型,专为单通道语音增强任务设计,在Libri1Mix数据集上训练。
音频增强
PyTorch
D
JorisCos
4,859
1
Dptnet Libri1Mix Enhsingle 16k
基于Asteroid框架训练的音频增强模型,专注于单声道语音增强任务
音频增强
PyTorch
D
JorisCos
4,446
3
Convtasnet Libri1Mix Enhsingle 16k
基于Asteroid框架训练的ConvTasNet模型,用于单通道语音增强任务,在Libri1Mix数据集上训练。
音频增强
PyTorch
C
JorisCos
2,570
3
Sepformer Dns4 16k Enhancement
Apache-2.0
这是一个基于SepFormer架构的语音增强模型,专门用于去噪任务,在微软DNS-4数据集上训练,支持16kHz采样频率的音频处理。
音频增强
PyTorch 支持多种语言
S
speechbrain
1,669
20
Sepformer Wham Enhancement
Apache-2.0
使用SepFormer模型进行语音增强(去噪)的工具集,在WHAM!数据集(8kHz采样频率版本)上预训练,实现环境噪声和混响的去除。
音频增强
PyTorch 英语
S
speechbrain
827
23
MP SENet DNS
MIT
一个基于Pytorch的音频去噪和语音增强模型,有效去除音频噪声提升语音清晰度
音频增强
Safetensors
M
JacobLinCool
723
1
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98