🚀 Wav2Vec2-Large-XLSR-印尼語模型
這是一個針對印尼語的Wav2Vec2-Large-XLSR模型,它是在印尼語Common Voice數據集上對facebook/wav2vec2-large-xlsr-53模型進行微調得到的。使用該模型時,請確保輸入的語音採樣率為16kHz。
🚀 快速開始
本模型可直接使用(無需語言模型),使用方法如下:
💻 使用示例
基礎用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "id", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
🔧 評估
該模型可在Common Voice的印尼語測試數據上進行評估,評估方法如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "id", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
測試結果:18.32 %
🔧 訓練
訓練使用了Common Voice的train
、validation
等數據集。
訓練腳本可在此處找到(即將發佈)。
📄 許可證
本模型採用Apache 2.0許可證。
📋 模型信息
屬性 |
詳情 |
模型類型 |
針對印尼語微調的Wav2Vec2-Large-XLSR模型 |
訓練數據 |
印尼語Common Voice數據集 |
評估指標 |
詞錯誤率(WER) |
測試WER |
21.07 |