🚀 用於葡萄牙語語音識別的微調XLSR - 53大模型
本項目是在葡萄牙語上對facebook/wav2vec2-large-xlsr-53模型進行微調,使用了Common Voice 6.1的訓練集和驗證集。使用此模型時,請確保語音輸入採樣率為16kHz。
該模型的微調得益於OVHcloud慷慨提供的GPU計算資源。訓練腳本可在以下鏈接找到:https://github.com/jonatasgrosman/wav2vec2-sprint
🚀 快速開始
本模型是在葡萄牙語上對facebook/wav2vec2-large-xlsr-53進行微調得到的,使用了Common Voice 6.1的訓練集和驗證集。使用該模型時,需確保語音輸入採樣率為16kHz。
✨ 主要特性
📦 安裝指南
文檔未提及具體安裝步驟,可參考訓練腳本倉庫(https://github.com/jonatasgrosman/wav2vec2-sprint )中的相關說明進行安裝。
💻 使用示例
基礎用法
使用HuggingSound庫:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
高級用法
編寫自己的推理腳本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
以下是預測結果示例:
參考文本 |
預測結果 |
NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. |
NEMHUM VADAN OS OLTWES INSTRUMENTOS DE TTÉÃN UM BOMBERDEIRO OSTER |
PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA |
E DIR ENGINHEIRO EMPRESTAR AS PESSOAS DA ALDEIA |
OITO |
OITO |
TRANCÁ-LOS |
TRANCAUVOS |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
O YOUTUBE AINDA É A MELHOR PLATAFORMA DE VÍDEOS. |
YOUTUBE AINDA É A MELHOR PLATAFOMA DE VÍDEOS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
EU SOU O SENHOR |
EU SOU O SENHOR |
DUAS MULHERES QUE SENTAM-SE PARA BAIXO LENDO JORNAIS. |
DUAS MIERES QUE SENTAM-SE PARA BAICLANE JODNÓI |
EU ORIGINALMENTE ESPERAVA |
EU ORIGINALMENTE ESPERAVA |
📚 詳細文檔
評估
- 在
mozilla-foundation/common_voice_6_0
的test
分割集上進行評估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset mozilla-foundation/common_voice_6_0 --config pt --split test
- 在
speech-recognition-community-v2/dev_data
上進行評估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 許可證
本項目採用Apache-2.0許可證。
模型信息
屬性 |
詳情 |
模型類型 |
針對葡萄牙語語音識別微調的XLSR - 53大模型 |
訓練數據 |
Common Voice、mozilla - foundation/common_voice_6_0 |
評估指標
任務 |
數據集 |
指標 |
值 |
自動語音識別 |
Common Voice pt |
測試字錯率 (WER) |
11.31 |
自動語音識別 |
Common Voice pt |
測試字符錯誤率 (CER) |
3.74 |
自動語音識別 |
Common Voice pt |
測試字錯率 (+LM) |
9.01 |
自動語音識別 |
Common Voice pt |
測試字符錯誤率 (+LM) |
3.21 |
自動語音識別 |
Robust Speech Event - Dev Data |
開發集字錯率 (WER) |
42.1 |
自動語音識別 |
Robust Speech Event - Dev Data |
開發集字符錯誤率 (CER) |
17.93 |
自動語音識別 |
Robust Speech Event - Dev Data |
開發集字錯率 (+LM) |
36.92 |
自動語音識別 |
Robust Speech Event - Dev Data |
開發集字符錯誤率 (+LM) |
16.88 |
📖 引用
如果您想引用此模型,可以使用以下BibTeX格式:
@misc{grosman2021xlsr53-large-portuguese,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}ortuguese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese}},
year={2021}
}