🚀 用于葡萄牙语语音识别的微调XLSR - 53大模型
本项目是在葡萄牙语上对facebook/wav2vec2-large-xlsr-53模型进行微调,使用了Common Voice 6.1的训练集和验证集。使用此模型时,请确保语音输入采样率为16kHz。
该模型的微调得益于OVHcloud慷慨提供的GPU计算资源。训练脚本可在以下链接找到:https://github.com/jonatasgrosman/wav2vec2-sprint
🚀 快速开始
本模型是在葡萄牙语上对facebook/wav2vec2-large-xlsr-53进行微调得到的,使用了Common Voice 6.1的训练集和验证集。使用该模型时,需确保语音输入采样率为16kHz。
✨ 主要特性
📦 安装指南
文档未提及具体安装步骤,可参考训练脚本仓库(https://github.com/jonatasgrosman/wav2vec2-sprint )中的相关说明进行安装。
💻 使用示例
基础用法
使用HuggingSound库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
高级用法
编写自己的推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
以下是预测结果示例:
参考文本 |
预测结果 |
NEM O RADAR NEM OS OUTROS INSTRUMENTOS DETECTARAM O BOMBARDEIRO STEALTH. |
NEMHUM VADAN OS OLTWES INSTRUMENTOS DE TTÉÃN UM BOMBERDEIRO OSTER |
PEDIR DINHEIRO EMPRESTADO ÀS PESSOAS DA ALDEIA |
E DIR ENGINHEIRO EMPRESTAR AS PESSOAS DA ALDEIA |
OITO |
OITO |
TRANCÁ-LOS |
TRANCAUVOS |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
REALIZAR UMA INVESTIGAÇÃO PARA RESOLVER O PROBLEMA |
O YOUTUBE AINDA É A MELHOR PLATAFORMA DE VÍDEOS. |
YOUTUBE AINDA É A MELHOR PLATAFOMA DE VÍDEOS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
MENINA E MENINO BEIJANDO NAS SOMBRAS |
EU SOU O SENHOR |
EU SOU O SENHOR |
DUAS MULHERES QUE SENTAM-SE PARA BAIXO LENDO JORNAIS. |
DUAS MIERES QUE SENTAM-SE PARA BAICLANE JODNÓI |
EU ORIGINALMENTE ESPERAVA |
EU ORIGINALMENTE ESPERAVA |
📚 详细文档
评估
- 在
mozilla-foundation/common_voice_6_0
的test
分割集上进行评估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset mozilla-foundation/common_voice_6_0 --config pt --split test
- 在
speech-recognition-community-v2/dev_data
上进行评估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 许可证
本项目采用Apache-2.0许可证。
模型信息
属性 |
详情 |
模型类型 |
针对葡萄牙语语音识别微调的XLSR - 53大模型 |
训练数据 |
Common Voice、mozilla - foundation/common_voice_6_0 |
评估指标
任务 |
数据集 |
指标 |
值 |
自动语音识别 |
Common Voice pt |
测试字错率 (WER) |
11.31 |
自动语音识别 |
Common Voice pt |
测试字符错误率 (CER) |
3.74 |
自动语音识别 |
Common Voice pt |
测试字错率 (+LM) |
9.01 |
自动语音识别 |
Common Voice pt |
测试字符错误率 (+LM) |
3.21 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集字错率 (WER) |
42.1 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集字符错误率 (CER) |
17.93 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集字错率 (+LM) |
36.92 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集字符错误率 (+LM) |
16.88 |
📖 引用
如果您想引用此模型,可以使用以下BibTeX格式:
@misc{grosman2021xlsr53-large-portuguese,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {P}ortuguese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese}},
year={2021}
}