đ Wav2Vec2-Large-XLSR-Indonesian
This is a fine - tuned model based on facebook/wav2vec2-large-xlsr-53 for automatic speech recognition on the Indonesian Common Voice dataset. It provides accurate speech - to - text conversion for Indonesian language.
đ Model Information
Property |
Details |
Model Type |
Wav2Vec2 - Large - XLSR - Indonesian |
Training Data |
Common Voice |
Metrics |
WER (Word Error Rate) |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
License |
apache - 2.0 |
đ Model Index
- Name: XLSR Wav2Vec2 Indonesian by Galuh
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic - speech - recognition
- Dataset:
- Name: Common Voice id
- Type: common_voice
- Args: id
- Metrics:
- Name: Test WER
- Type: wer
- Value: 21.07
đ Quick Start
This is the model for Wav2Vec2 - Large - XLSR - Indonesian, a fine - tuned facebook/wav2vec2-large-xlsr-53 model on the Indonesian Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "id", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
đ Documentation
Evaluation
The model can be evaluated as follows on the Indonesian test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "id", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model = Wav2Vec2ForCTC.from_pretrained("Galuh/wav2vec2-large-xlsr-indonesian")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\'\â\īŋŊ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 18.32 %
Training
The Common Voice train
, validation
, and ... datasets were used for training as well as ... and ... # TODO
The script used for training can be found here (will be available soon)
đ License
This project is licensed under the apache - 2.0 license.