Instructor Base
基於T5架構的文本嵌入模型,專注於句子相似度計算和文本檢索任務,在多個基準測試中表現優異。
下載量 13.22k
發布時間 : 12/20/2022
模型概述
該模型是一個基於T5架構的文本嵌入模型,主要用於生成高質量的句子嵌入向量,支持信息檢索、文本分類、聚類和語義相似度計算等多種自然語言處理任務。
模型特點
多任務性能優異
在MTEB基準測試的多個任務中表現優秀,包括分類、聚類和檢索任務
高效文本嵌入
能夠生成高質量的句子嵌入向量,適用於大規模信息檢索場景
廣泛適用性
支持多種下游NLP任務,包括相似度計算、分類和聚類等
模型能力
句子相似度計算
文本嵌入生成
信息檢索
文本分類
文本聚類
語義搜索
文本重排序
使用案例
電子商務
產品評論分類
對亞馬遜產品評論進行情感分析分類
在AmazonPolarity分類任務中達到88.36%準確率
反事實檢測
識別亞馬遜產品評論中的反事實陳述
在AmazonCounterfactual分類任務中達到86.21%準確率
金融
銀行客服分類
對銀行客戶諮詢進行分類
在Banking77分類任務中達到77.04%準確率
學術研究
論文聚類
對arXiv和biorxiv論文進行主題聚類
在ArxivClusteringP2P任務中達到39.68 v_measure分數
🚀 hkunlp/instructor-base
我們推出了 Instructor👨🏫,這是一個經過指令微調的文本嵌入模型。無需任何微調,只需提供任務指令,它就能生成適用於任何任務(如分類、檢索、聚類、文本評估等)和領域(如科學、金融等)的文本嵌入。Instructor👨 在 70 個不同的嵌入任務中達到了最優性能!
該模型使用我們定製的 sentence-transformer
庫,易於上手。更多詳細信息,請查看 我們的論文 和 項目頁面!
**************************** 更新內容 ****************************
🚀 快速開始
📦 安裝指南
pip install InstructorEmbedding
💻 使用示例
基礎用法
計算自定義嵌入:
from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-base')
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
instruction = "Represent the Science title:"
embeddings = model.encode([[instruction,sentence]])
print(embeddings)
高級用法
計算句子相似度
from sklearn.metrics.pairwise import cosine_similarity
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
embeddings_a = model.encode(sentences_a)
embeddings_b = model.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
print(similarities)
信息檢索
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
query_embeddings = model.encode(query)
corpus_embeddings = model.encode(corpus)
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
retrieved_doc_id = np.argmax(similarities)
print(retrieved_doc_id)
聚類
import sklearn.cluster
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']]
embeddings = model.encode(sentences)
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
clustering_model.fit(embeddings)
cluster_assignment = clustering_model.labels_
print(cluster_assignment)
📚 詳細文檔
如果您想為特定句子計算自定義嵌入,可以遵循以下統一模板編寫指令:
Represent the domain
text_type
for task_objective
:
domain
是可選的,它指定了文本的領域,例如科學、金融、醫學等。text_type
是必需的,它指定了編碼單元,例如句子、文檔、段落等。task_objective
是可選的,它指定了嵌入的目標,例如檢索文檔、對句子進行分類等。
📄 許可證
該項目採用 apache-2.0
許可證。
模型指標
屬性 | 詳情 |
---|---|
模型類型 | 文本嵌入模型 |
訓練數據 | 未提及 |
模型在多個任務和數據集上的詳細指標如下:
分類任務
數據集 | 準確率 | AP | F1 |
---|---|---|---|
MTEB AmazonCounterfactualClassification (en) | 86.2089552238806 | 55.76273850794966 | 81.26104211414781 |
MTEB AmazonPolarityClassification | 88.35995000000001 | 84.18839957309655 | 88.317619250081 |
MTEB AmazonReviewsClassification (en) | 44.64 | 未提及 | 42.48663956478136 |
MTEB Banking77Classification | 77.03571428571428 | 未提及 | 75.87384305045917 |
MTEB EmotionClassification | 51.760000000000005 | 未提及 | 45.51690565701713 |
MTEB ImdbClassification | 81.1744 | 75.44973697032414 | 81.09901117955782 |
MTEB MTOPDomainClassification (en) | 93.71865025079799 | 未提及 | 93.38906173610519 |
MTEB MTOPIntentClassification (en) | 70.2576379388965 | 未提及 | 49.20405830249464 |
MTEB MassiveIntentClassification (en) | 67.48486886348351 | 未提及 | 64.92199176095157 |
MTEB MassiveScenarioClassification (en) | 72.59246805648958 | 未提及 | 72.1222026389164 |
MTEB ToxicConversationsClassification | 71.8194 | 14.447702451658554 | 55.13659412856185 |
MTEB TweetSentimentExtractionClassification | 63.310696095076416 | 未提及 | 63.360434851097814 |
檢索任務
數據集 | MAP@1 | MAP@10 | MAP@100 | MAP@1000 | MRR@1 | MRR@10 | MRR@100 | MRR@1000 | NDCG@1 | NDCG@10 | NDCG@100 | NDCG@1000 | 準確率@1 | 準確率@10 | 準確率@100 | 準確率@1000 | 召回率@1 | 召回率@10 | 召回率@100 | 召回率@1000 | 召回率@3 | 召回率@5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MTEB ArguAna | 27.383000000000003 | 43.024 | 44.023 | 44.025999999999996 | 28.094 | 43.315 | 44.313 | 44.317 | 27.383000000000003 | 52.032000000000004 | 56.19499999999999 | 56.272 | 27.383000000000003 | 8.087 | 0.989 | 0.099 | 27.383000000000003 | 80.868 | 98.86200000000001 | 99.431 | 51.28 | 65.22 |
MTEB CQADupstackAndroidRetrieval | 33.739999999999995 | 46.197 | 47.814 | 47.934 | 41.059 | 52.292 | 52.978 | 53.015 | 41.059 | 52.608 | 57.965 | 59.775999999999996 | 41.059 | 9.943 | 1.6070000000000002 | 0.20500000000000002 | 33.739999999999995 | 63.888999999999996 | 85.832 | 97.475 | 51.953 | 57.498000000000005 |
MTEB CQADupstackEnglishRetrieval | 31.169999999999998 | 41.455 | 42.716 | 42.847 | 39.427 | 47.818 | 48.519 | 48.558 | 39.427 | 47.181 | 51.737 | 53.74 | 39.427 | 8.847 | 1.425 | 0.189 | 31.169999999999998 | 56.971000000000004 | 76.31400000000001 | 88.93900000000001 | 45.208 | 49.923 |
MTEB CQADupstackGamingRetrieval | 39.682 | 52.766000000000005 | 53.84100000000001 | 53.898 | 45.266 | 56.093 | 56.763 | 56.793000000000006 | 45.266 | 58.836 | 62.863 | 63.912 | 45.266 | 9.492 | 1.236 | 0.13699999999999998 | 39.682 | 73.233 | 90.335 | 97.452 | 58.562000000000005 | 65.569 |
MTEB CQADupstackGisRetrieval | 26.743 | 34.016000000000005 | 35.028999999999996 | 35.113 | 28.927000000000003 | 36.32 | 37.221 | 37.281 | 28.927000000000003 | 38.474000000000004 | 43.580000000000005 | 45.64 | 28.927000000000003 | 5.74 | 0.8710000000000001 | 0.108 | 26.743 | 49.955 | 73.904 | 89.133 | 38.072 | 43.266 |
MTEB CQADupstackMathematicaRetrieval | 16.928 | 23.549 | 24.887 | 25.018 | 21.02 | 27.898 | 29.018 | 29.099999999999998 | 21.02 | 28.277 | 34.54 | 37.719 | 21.02 | 5.361 | 0.9809999999999999 | 0.13899999999999998 | 16.928 | 38.601 | 65.759 | 88.543 | 25.556 | 30.447000000000003 |
MTEB CQADupstackPhysicsRetrieval | 28.549000000000003 | 38.426 | 39.845000000000006 | 39.956 | 35.034 | 44.041000000000004 | 44.95 | 44.997 | 35.034 | 44.218 | 49.958000000000006 | 52.019000000000005 | 35.034 | 7.911 | 1.26 | 0.16 | 28.549000000000003 | 56.035999999999994 | 79.701 | 93.149 | 42.275 | 49.097 |
MTEB CQADupstackProgrammersRetrieval | 29.391000000000002 | 39.48 | 40.727000000000004 | 40.835 | 35.959 | 44.726 | 45.531 | 45.582 | 35.959 | 45.303 | 50.683 | 52.818 | 35.959 | 8.241999999999999 | 1.274 | 0.163 | 29.391000000000002 | 57.364000000000004 | 80.683 | 94.918 | 42.263 | 48.634 |
MTEB CQADupstackRetrieval | 26.791749999999997 | 35.75541666666667 | 37.00791666666667 | 37.12408333333333 | 31.744333333333337 | 39.9925 | 40.86458333333333 | 40.92175000000001 | 31.744333333333337 | 40.95008333333334 | 46.25966666666667 | 48.535333333333334 | 31.744333333333337 | 7.135166666666666 | 1.1535833333333334 | 0.15391666666666665 | 26.791749999999997 | 51.98625 | 75.30358333333334 | 91.05433333333333 | 39.39583333333333 | 45.05925 |
MTEB CQADupstackStatsRetrieval | 22.219 | 29.162 | 30.049999999999997 | 30.144 | 25.153 | 31.814999999999998 | 32.573 | 32.645 | 25.153 | 33.099000000000004 | 37.768 | 40.331 | 25.153 | 5.183999999999999 | 0.8170000000000001 | 0.11100000000000002 | 22.219 | 42.637 | 64.704 | 83.963 | 32.444 | 36.802 |
MTEB CQADupstackTexRetrieval | 17.427999999999997 | 24.029 | 25.119999999999997 | 25.257 | 21.129 | 27.750000000000004 | 28.666999999999998 | 28.754999999999995 | 21.129 | 28.203 | 33.44 | 36.61 | 21.129 | 5.055 | 0.909 | 0.13699999999999998 | 17.427999999999997 | 36.923 | 60.606 | 83.19 | 26.845000000000002 | 31.247000000000003 |
MTEB CQADupstackUnixRetrieval | 26.457000000000004 | 35.228 | 36.475 | 36.585 | 30.784 | 39.133 | 40.11 | 40.169 | 30.784 | 40.358 | 46.119 | 48.428 | 30.784 | 6.800000000000001 | 1.083 | 0.13899999999999998 | 26.457000000000004 | 51.845 | 77.046 | 92.892 | 38.89 | 44.688 |
MTEB CQADupstackWebmastersRetrieval | 29.378999999999998 | 37.373 | 39.107 | 39.317 | 35.178 | 42.44 | 43.434 | 43.482 | 35.178 | 42.82 | 48.935 | 51.28 | 35.178 | 7.945 | 1.524 | 0.242 | 29.378999999999998 | 52.141999999999996 | 79.49000000000001 | 93.782 | 39.579 | 45.462 |
MTEB CQADupstackWordpressRetrieval | 19.814999999999998 | 27.383999999999997 | 28.483999999999998 | 28.585 | 21.996 | 29.584 | 30.611 | 30.684 | 21.996 | 32.024 | 37.528 | 40.150999999999996 | 21.996 | 5.102 | 0.856 | 0.117 | 19.814999999999998 | 44.239 | 69.269 | 89.216 | 31.102999999999998 | 38.078 |
MTEB ClimateFEVER | 11.349 | 19.436 | 21.282999999999998 | 21.479 | 25.863000000000003 | 37.218 | 38.198 | 38.236 | 25.863000000000003 | 27.953 | 35.327 | 38.708999999999996 | 25.863000000000003 | 8.99 | 1.6889999999999998 | 0.232 | 11.349 | 34.581 | 60.178 | 78.88199999999999 | 20.041999999999998 | 25.458 |
MTEB DBPedia | 7.893 | 15.457 | 20.905 | 22.116 | 57.49999999999999 | 65.467 | 66.022 | 66.039 | 45.875 | 33.344 | 36.849 | 44.03 | 57.49999999999999 | 25.95 | 7.89 | 1.669 | 7.893 | 20.724999999999998 | 42.516 | 65.822 | 12.615000000000002 | 15.482000000000001 |
MTEB FEVER | 53.882 | 65.902 | 66.33 | 66.348 | 58.041 | 70.133 | 70.463 | 70.47 | 58.041 | 71.84700000000001 | 73.699 | 74.06700000000001 | 58.041 | 9.427000000000001 | 1.049 | 0.11 | 53.882 | 85.99 | 94.09100000000001 | 96.612 | 75.25 | 80.997 |
MTEB FiQA2018 | 19.165 | 31.845000000000002 | 33.678999999999995 | 33.878 | 38.272 | 47.04 | 47.923 | 47.973 | 38.272 | 39.177 | 45.995000000000005 | 49.312 | 38.272 | 10.926 | 1.809 | 0.23700000000000002 | 19.165 | 45.103 | 70.295 | 90.592 | 32.832 | 37.905 |
MTEB HotpotQA | 32.397 | 44.83 | 45.716 | 45.797 | 64.794 | 71.866 | 72.22 | 72.238 | 64.794 | 54.186 | 57.623000000000005 | 59.302 | 64.794 | 11.219 | 1.394 | 0.16199999999999998 | 32.397 | 56.096999999999994 | 69.696 | 80.88499999999999 | 46.150999999999996 | 50.993 |
MTEB MSMARCO | 19.519000000000002 | 31.025000000000002 | 32.275999999999996 | 32.329 | 20.115 | 31.569000000000003 | 32.768 | 32.816 | 20.115 | 37.756 | 43.858000000000004 | 45.199 | 20.115 | 6.122 | 0.919 | 0.10300000000000001 | 19.519000000000002 | 58.62500000000001 | 86.99 | 97.268 | 37.002 | 46.778 |
MTEB NFCorpus | 5.185 | 11.158 | 14.041 | 15.360999999999999 | 44.582 | 53.083999999999996 | 53.787 | 53.824000000000005 | 42.57 | 31.593 | 29.093999999999998 | 37.909 | 43.963 | 23.498 | 7.6160000000000005 | 2.032 | 5.185 | 15.234 | 29.49 | 62.273999999999994 | 9.55 | 11.103 |
MTEB NQ | 23.803 | 38.183 | 39.421 | 39.464 | 26.68 | 40.439 | 41.415 | 41.443999999999996 | 26.68 | 45.882 | 51.227999999999994 | 52.207 | 26.68 | 7.9750000000000005 | 1.0959999999999999 | 0.11900000000000001 | 23.803 | 67.152 | 90.522 | 97.743 | 45.338 | 55.106 |
MTEB QuoraRetrieval | 70.473 | 84.452 | 85.101 | 85.115 | 81.19 | 87.324 | 87.434 | 87.435 | 81.21000000000001 | 88.19 | 89.44 | 89.526 | 81.21000000000001 | 13.417000000000002 | 1.537 | 0.157 | 70.473 | 95.367 | 99.616 | 99.996 | 86.936 | 91.557 |
MTEB SciFact | 44.583 | 52.978 | 53.803 | 53.839999999999996 | 47.0 | 54.730000000000004 | 55.31399999999999 | 55.346 | 47.0 | 57.82899999999999 | 61.49400000000001 | 62.676 | 47.0 | 7.867 | 0.997 | 0.11 | 44.583 | 71.172 | 87.7 | 97.333 | 56.511 | 64.206 |
MTEB TRECCOVID | 0.2 | 1.398 | 7.406 | 18.401 | 70.0 | 79.25999999999999 | 79.25999999999999 | 79.25999999999999 | 63.0 | 58.548 | 45.216 | 41.149 | 70.0 | 64.0 | 46.92 | 18.642 | 0.2 | 1.6729999999999998 | 10.856 | 38.964999999999996 | 0.504 | 0.852 |
MTEB Touche2020 | 1.6629999999999998 | 8.601 | 14.354 | 15.927 | 18.367 | 34.466 | 35.235 | 35.27 | 14.285999999999998 | 20.374 | 33.532000000000004 | 45.561 | 18.367 | 20.204 | 7.489999999999999 | 1.5630000000000002 | 1.6629999999999998 | 15.549 | 47.497 | 84.524 | 5.289 | 8.035 |
聚類任務
數據集 | V-measure |
---|---|
MTEB ArxivClusteringP2P | 39.68441054431849 |
MTEB ArxivClusteringS2S | 29.188539728343844 |
MTEB BiorxivClusteringP2P | 32.98041170516364 |
MTEB BiorxivClusteringS2S | 25.71652988451154 |
MTEB MedrxivClusteringP2P | 30.887642595096825 |
MTEB MedrxivClusteringS2S | 28.3764418784054 |
MTEB RedditClustering | 59.25776525253911 |
MTEB RedditClusteringP2P | 63.22135271663078 |
MTEB StackExchangeClustering | 65.0394225901397 |
MTEB StackExchangeClusteringP2P | 35.27954189859326 |
MTEB TwentyNewsgroupsClustering | 51.30677907335145 |
重排序任務
數據集 | MAP | MRR |
---|---|---|
MTEB AskUbuntuDupQuestions | 63.173362687519784 | 76.18860748362133 |
MTEB SciDocsRR | 78.82761687254882 | 93.46223674655047 |
MTEB StackOverflowDupQuestions | 50.99055979974896 | 51.82745257193787 |
STS任務
數據集 | 餘弦相似度斯皮爾曼相關係數 |
---|---|
MTEB BIOSSES | 82.30789953771232 |
MTEB SICK-R | 80.25888668589654 |
MTEB STS12 | 77.02037527837669 |
MTEB STS13 | 86.58432681008449 |
MTEB STS14 | 81.31697756099051 |
MTEB STS15 | 88.18867599667057 |
MTEB STS16 | 84.87853941747623 |
MTEB STS17 (en-en) | 89.46479925383916 |
MTEB STS22 (en) | 66.45272113649146 |
MTEB STSBenchmark | 86.43357313527851 |
成對分類任務
數據集 | 餘弦相似度準確率 | 餘弦相似度AP | 餘弦相似度F1 | 餘弦相似度精確率 | 餘弦相似度召回率 | 點積準確率 | 點積AP | 點積F1 | 點積精確率 | 點積召回率 | 歐幾里得距離準確率 | 歐幾里得距離AP | 歐幾里得距離F1 | 歐幾里得距離精確率 | 歐幾里得距離召回率 | 曼哈頓距離準確率 | 曼哈頓距離AP | 曼哈頓距離F1 | 曼哈頓距離精確率 | 曼哈頓距離召回率 | 最大值準確率 | 最大值AP | 最大值F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MTEB SprintDuplicateQuestions | 99.66237623762376 | 90.35465126226322 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.66237623762376 | 90.35464287920453 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.66237623762376 | 90.3546512622632 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.65940594059406 | 90.29220174849843 | 82.4987605354487 | 81.80924287118977 | 83.2 | 99.66237623762376 | 90.35465126226322 | 82.4987605354487 |
MTEB TwitterSemEval2015 | 86.12386004649221 | 73.99096426215495 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.12386004649221 | 73.99096813038672 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.12386004649221 | 73.99095984980165 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.09405734040651 | 73.96825745608601 | 68.13888179729383 | 65.99901088031652 | 70.42216358839049 | 86.12386004649221 | 73.99096813038672 | 68.18416968442834 |
MTEB TwitterURLCorpus | 88.99367407924865 | 86.19720829843081 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.99367407924865 | 86.19718471454047 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.99367407924865 | 86.1972021422436 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.95680521597392 | 86.16659921351506 | 78.39125971550081 | 74.82502799552073 | 82.31444410224823 | 88.99367407924865 | 86.19720829843081 | 78.39889075384951 |
摘要任務
數據集 | 餘弦相似度皮爾遜相關係數 | 餘弦相似度斯皮爾曼相關係數 | 點積皮爾遜相關係數 | 點積斯皮爾曼相關係數 |
---|---|---|---|---|
MTEB SummEval | 30.21655465344237 | 29.853205339630172 | 30.216540628083564 | 29.868978894753027 |
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98