Instructor Base
A text embedding model based on the T5 architecture, focusing on sentence similarity calculation and text retrieval tasks, with excellent performance in multiple benchmark tests.
Downloads 13.22k
Release Time : 12/20/2022
Model Overview
This model is a text embedding model based on the T5 architecture, primarily used to generate high-quality sentence embedding vectors, supporting various natural language processing tasks such as information retrieval, text classification, clustering, and semantic similarity calculation.
Model Features
Excellent Multi-task Performance
Performs well in multiple tasks of the MTEB benchmark, including classification, clustering, and retrieval tasks.
Efficient Text Embedding
Capable of generating high-quality sentence embedding vectors, suitable for large-scale information retrieval scenarios.
Broad Applicability
Supports various downstream NLP tasks, including similarity calculation, classification, and clustering.
Model Capabilities
Sentence Similarity Calculation
Text Embedding Generation
Information Retrieval
Text Classification
Text Clustering
Semantic Search
Text Re-ranking
Use Cases
E-commerce
Product Review Classification
Sentiment analysis classification of Amazon product reviews
Achieved 88.36% accuracy in the AmazonPolarity classification task
Counterfactual Detection
Identifying counterfactual statements in Amazon product reviews
Achieved 86.21% accuracy in the AmazonCounterfactual classification task
Finance
Bank Customer Service Classification
Classification of bank customer inquiries
Achieved 77.04% accuracy in the Banking77 classification task
Academic Research
Paper Clustering
Topic clustering of arXiv and biorxiv papers
Achieved a 39.68 v_measure score in the ArxivClusteringP2P task
🚀 Sentence Similarity Model
This model focuses on sentence similarity tasks and is applicable to various text - related scenarios such as information retrieval, text classification, and text clustering.
✨ Features
- Multiple Task Support: Capable of handling tasks like Classification, Retrieval, Clustering, Reranking, and STS.
- Rich Dataset Adaptability: Tested on a wide range of datasets including MTEB and BeIR datasets.
- Comprehensive Metrics: Evaluated using multiple metrics such as accuracy, ap, f1, map, mrr, etc.
📚 Documentation
Model Information
Property | Details |
---|---|
Pipeline Tag | sentence - similarity |
Tags | text - embedding, embeddings, information - retrieval, beir, text - classification, language - model, text - clustering, text - semantic - similarity, text - evaluation, prompt - retrieval, text - reranking, sentence - transformers, feature - extraction, sentence - similarity, transformers, t5, English, Sentence Similarity, natural_questions, ms_marco, fever, hotpot_qa, mteb |
Language | en |
Inference | false |
License | apache - 2.0 |
Model Performance
The model has been tested on multiple datasets with different tasks, and the following are the detailed results:
final_base_results
Task | Dataset | Metrics | Value |
---|---|---|---|
Classification | MTEB AmazonCounterfactualClassification (en) | accuracy | 86.2089552238806 |
Classification | MTEB AmazonCounterfactualClassification (en) | ap | 55.76273850794966 |
Classification | MTEB AmazonCounterfactualClassification (en) | f1 | 81.26104211414781 |
Classification | MTEB AmazonPolarityClassification | accuracy | 88.35995000000001 |
Classification | MTEB AmazonPolarityClassification | ap | 84.18839957309655 |
Classification | MTEB AmazonPolarityClassification | f1 | 88.317619250081 |
Classification | MTEB AmazonReviewsClassification (en) | accuracy | 44.64 |
Classification | MTEB AmazonReviewsClassification (en) | f1 | 42.48663956478136 |
Retrieval | MTEB ArguAna | map_at_1 | 27.383000000000003 |
Retrieval | MTEB ArguAna | map_at_10 | 43.024 |
Retrieval | MTEB ArguAna | map_at_100 | 44.023 |
Retrieval | MTEB ArguAna | map_at_1000 | 44.025999999999996 |
Retrieval | MTEB ArguAna | map_at_3 | 37.684 |
Retrieval | MTEB ArguAna | map_at_5 | 40.884 |
Retrieval | MTEB ArguAna | mrr_at_1 | 28.094 |
Retrieval | MTEB ArguAna | mrr_at_10 | 43.315 |
Retrieval | MTEB ArguAna | mrr_at_100 | 44.313 |
Retrieval | MTEB ArguAna | mrr_at_1000 | 44.317 |
Retrieval | MTEB ArguAna | mrr_at_3 | 37.862 |
Retrieval | MTEB ArguAna | mrr_at_5 | 41.155 |
Retrieval | MTEB ArguAna | ndcg_at_1 | 27.383000000000003 |
Retrieval | MTEB ArguAna | ndcg_at_10 | 52.032000000000004 |
Retrieval | MTEB ArguAna | ndcg_at_100 | 56.19499999999999 |
Retrieval | MTEB ArguAna | ndcg_at_1000 | 56.272 |
Retrieval | MTEB ArguAna | ndcg_at_3 | 41.166000000000004 |
Retrieval | MTEB ArguAna | ndcg_at_5 | 46.92 |
Retrieval | MTEB ArguAna | precision_at_1 | 27.383000000000003 |
Retrieval | MTEB ArguAna | precision_at_10 | 8.087 |
Retrieval | MTEB ArguAna | precision_at_100 | 0.989 |
Retrieval | MTEB ArguAna | precision_at_1000 | 0.099 |
Retrieval | MTEB ArguAna | precision_at_3 | 17.093 |
Retrieval | MTEB ArguAna | precision_at_5 | 13.044 |
Retrieval | MTEB ArguAna | recall_at_1 | 27.383000000000003 |
Retrieval | MTEB ArguAna | recall_at_10 | 80.868 |
Retrieval | MTEB ArguAna | recall_at_100 | 98.86200000000001 |
Retrieval | MTEB ArguAna | recall_at_1000 | 99.431 |
Retrieval | MTEB ArguAna | recall_at_3 | 51.28 |
Retrieval | MTEB ArguAna | recall_at_5 | 65.22 |
Clustering | MTEB ArxivClusteringP2P | v_measure | 39.68441054431849 |
Clustering | MTEB ArxivClusteringS2S | v_measure | 29.188539728343844 |
Reranking | MTEB AskUbuntuDupQuestions | map | 63.173362687519784 |
Reranking | MTEB AskUbuntuDupQuestions | mrr | 76.18860748362133 |
STS | MTEB BIOSSES | cos_sim_spearman | 82.30789953771232 |
Classification | MTEB Banking77Classification | accuracy | 77.03571428571428 |
Classification | MTEB Banking77Classification | f1 | 75.87384305045917 |
Clustering | MTEB BiorxivClusteringP2P | v_measure | 32.98041170516364 |
Clustering | MTEB BiorxivClusteringS2S | v_measure | 25.71652988451154 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_1 | 33.739999999999995 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_10 | 46.197 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_100 | 47.814 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_1000 | 47.934 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_3 | 43.091 |
Retrieval | MTEB CQADupstackAndroidRetrieval | map_at_5 | 44.81 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_1 | 41.059 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_10 | 52.292 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_100 | 52.978 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_1000 | 53.015 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_3 | 49.976 |
Retrieval | MTEB CQADupstackAndroidRetrieval | mrr_at_5 | 51.449999999999996 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_1 | 41.059 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_10 | 52.608 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_100 | 57.965 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_1000 | 59.775999999999996 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_3 | 48.473 |
Retrieval | MTEB CQADupstackAndroidRetrieval | ndcg_at_5 | 50.407999999999994 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_1 | 41.059 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_10 | 9.943 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_100 | 1.6070000000000002 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_1000 | 0.20500000000000002 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_3 | 23.413999999999998 |
Retrieval | MTEB CQADupstackAndroidRetrieval | precision_at_5 | 16.481 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_1 | 33.739999999999995 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_10 | 63.888999999999996 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_100 | 85.832 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_1000 | 97.475 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_3 | 51.953 |
Retrieval | MTEB CQADupstackAndroidRetrieval | recall_at_5 | 57.498000000000005 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_1 | 31.169999999999998 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_10 | 41.455 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_100 | 42.716 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_1000 | 42.847 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_3 | 38.568999999999996 |
Retrieval | MTEB CQADupstackEnglishRetrieval | map_at_5 | 40.099000000000004 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_1 | 39.427 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_10 | 47.818 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_100 | 48.519 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_1000 | 48.558 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_3 | 45.86 |
Retrieval | MTEB CQADupstackEnglishRetrieval | mrr_at_5 | 46.936 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_1 | 39.427 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_10 | 47.181 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_100 | 51.737 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_1000 | 53.74 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_3 | 43.261 |
Retrieval | MTEB CQADupstackEnglishRetrieval | ndcg_at_5 | 44.891 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_1 | 39.427 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_10 | 8.847 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_100 | 1.425 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_1000 | 0.189 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_3 | 20.785999999999998 |
Retrieval | MTEB CQADupstackEnglishRetrieval | precision_at_5 | 14.560999999999998 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_1 | 31.169999999999998 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_10 | 56.971000000000004 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_100 | 76.31400000000001 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_1000 | 88.93900000000001 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_3 | 45.208 |
Retrieval | MTEB CQADupstackEnglishRetrieval | recall_at_5 | 49.923 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_1 | 39.682 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_10 | 52.766000000000005 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_100 | 53.84100000000001 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_1000 | 53.898 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_3 | 49.291000000000004 |
Retrieval | MTEB CQADupstackGamingRetrieval | map_at_5 | 51.365 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_1 | 45.266 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_10 | 56.093 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_100 | 56.763 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_1000 | 56.793000000000006 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_3 | 53.668000000000006 |
Retrieval | MTEB CQADupstackGamingRetrieval | mrr_at_5 | 55.1 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_1 | 45.266 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_10 | 58.836 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_100 | 62.863 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_1000 | 63.912 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_3 | 53.19199999999999 |
Retrieval | MTEB CQADupstackGamingRetrieval | ndcg_at_5 | 56.125 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_1 | 45.266 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_10 | 9.492 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_100 | 1.236 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_1000 | 0.13699999999999998 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_3 | 23.762 |
Retrieval | MTEB CQADupstackGamingRetrieval | precision_at_5 | 16.414 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_1 | 39.682 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_10 | 73.233 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_100 | 90.335 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_1000 | 97.452 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_3 | 58.562000000000005 |
Retrieval | MTEB CQADupstackGamingRetrieval | recall_at_5 | 65.569 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_1 | 26.743 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_10 | 34.016000000000005 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_100 | 35.028999999999996 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_1000 | 35.113 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_3 | 31.763 |
Retrieval | MTEB CQADupstackGisRetrieval | map_at_5 | 33.013999999999996 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_1 | 28.927000000000003 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_10 | 36.32 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_100 | 37.221 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_1000 | 37.281 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_3 | 34.105000000000004 |
Retrieval | MTEB CQADupstackGisRetrieval | mrr_at_5 | 35.371 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_1 | 28.927000000000003 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_10 | 38.474000000000004 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_100 | 43.580000000000005 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_1000 | 45.64 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_3 | 34.035 |
Retrieval | MTEB CQADupstackGisRetrieval | ndcg_at_5 | 36.186 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_1 | 28.927000000000003 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_10 | 5.74 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_100 | 0.8710000000000001 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_1000 | 0.108 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_3 | 14.124 |
Retrieval | MTEB CQADupstackGisRetrieval | precision_at_5 | 9.74 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_1 | 26.743 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_10 | 49.955 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_100 | 73.904 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_1000 | 89.133 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_3 | 38.072 |
Retrieval | MTEB CQADupstackGisRetrieval | recall_at_5 | 43.266 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_1 | 16.928 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_10 | 23.549 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_100 | 24.887 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_1000 | 25.018 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_3 | 21.002000000000002 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | map_at_5 | 22.256 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_1 | 21.02 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_10 | 27.898 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_100 | 29.018 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_1000 | 29.099999999999998 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_3 | 25.456 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | mrr_at_5 | 26.625 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_1 | 21.02 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_10 | 28.277 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_100 | 34.54 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_1000 | 37.719 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_3 | 23.707 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | ndcg_at_5 | 25.482 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_1 | 21.02 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_10 | 5.361 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_100 | 0.9809999999999999 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_1000 | 0.13899999999999998 |
Retrieval | MTEB CQADupstackMathematicaRetrieval | precision_at_3 | 11.401 |
📄 License
The model is released under the apache - 2.0
license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models