🚀 emrecan/bert-base-turkish-cased-mean-nli-stsb-tr
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
🚀 Quick Start
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model was trained on Turkish machine translated versions of NLI and STS-b datasets, using example training scripts from sentence-transformers GitHub repository.
✨ Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Can be used for tasks like clustering or semantic search.
- Trained on Turkish machine translated versions of NLI and STS-b datasets.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
Using Sentence-Transformers
from sentence_transformers import SentenceTransformer
sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]
model = SentenceTransformer('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
embeddings = model.encode(sentences)
print(embeddings)
Using HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Bu örnek bir cümle", "Her cümle vektöre çevriliyor"]
tokenizer = AutoTokenizer.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
model = AutoModel.from_pretrained('emrecan/bert-base-turkish-cased-mean-nli-stsb-tr')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
Evaluation results on test and development sets are given below:
Split |
Epoch |
cosine_pearson |
cosine_spearman |
euclidean_pearson |
euclidean_spearman |
manhattan_pearson |
manhattan_spearman |
dot_pearson |
dot_spearman |
test |
- |
0.834 |
0.830 |
0.820 |
0.819 |
0.819 |
0.818 |
0.799 |
0.789 |
validation |
1 |
0.850 |
0.848 |
0.831 |
0.835 |
0.83 |
0.83 |
0.80 |
0.806 |
validation |
2 |
0.857 |
0.857 |
0.844 |
0.848 |
0.844 |
0.848 |
0.813 |
0.810 |
validation |
3 |
0.860 |
0.859 |
0.846 |
0.851 |
0.846 |
0.850 |
0.825 |
0.822 |
validation |
4 |
0.859 |
0.860 |
0.846 |
0.851 |
0.846 |
0.851 |
0.825 |
0.823 |
Training
Training scripts training_nli_v2.py
and training_stsbenchmark_continue_training.py
were used to train the model.
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 360 with parameters:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 4,
"evaluation_steps": 200,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 License
This model is released under the Apache-2.0 license.
📋 Additional Information
Property |
Details |
Language |
Turkish |
Pipeline Tag |
Sentence Similarity |
Model Type |
Sentence-Transformers |
Training Datasets |
nli_tr, emrecan/stsb-mt-turkish |
Widget Source Sentence |
"Bu çok mutlu bir kişi" |
Widget Comparison Sentences |
"Bu mutlu bir köpek", "Bu sevincinden havalara uçan bir insan", "Çok kar yağıyor" |