Jina Embeddings V3
J
Jina Embeddings V3
Developed by jinaai
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Downloads 3.7M
Release Time : 9/5/2024
Model Overview
This model is a multilingual sentence embedding model capable of converting text into high-dimensional vector representations for computing sentence similarity and feature extraction. It supports a wide range of languages and is suitable for cross-lingual information retrieval and semantic similarity computation tasks.
Model Features
Multilingual Support
Supports over 100 languages, including major languages and various minority languages
Sentence Embeddings
Converts sentences into high-dimensional vector representations for easy computation of semantic similarity
Feature Extraction
Capable of extracting meaningful feature representations from text
Model Capabilities
Sentence similarity computation
Multilingual text embedding
Semantic feature extraction
Cross-lingual information retrieval
Use Cases
Information Retrieval
Cross-lingual Document Retrieval
Find semantically similar content in document collections across different languages
Achieved a primary score of 50.12 on the MTEB ArguAna-PL dataset
Semantic Similarity
Sentence Similarity Computation
Compute semantic similarity between two sentences
Achieved a Spearman correlation coefficient of 43.47 on the MTEB AFQMC dataset
## 🚀 Jina Embeddings V3
*Jina Embeddings V3 is a model designed for feature extraction and sentence similarity tasks. It supports multiple languages and has been evaluated on various MTEB datasets.*
## 📚 Documentation
### Model Information
| Property | Details |
|----------|---------|
| Model Type | jina-embeddings-v3 |
| Training Data | Not specified |
| Library Name | transformers |
| License | cc-by-nc-4.0 |
| Tags | feature-extraction, sentence-similarity, mteb, sentence-transformers |
| Supported Languages | multilingual, af, am, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fr, fy, ga, gd, gl, gu, ha, he, hi, hr, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lo, lt, lv, mg, mk, ml, mn, mr, ms, my, ne, nl, no, om, or, pa, pl, ps, pt, ro, ru, sa, sd, si, sk, sl, so, sq, sr, su, sv, sw, ta, te, th, tl, tr, ug, uk, ur, uz, vi, xh, yi, zh |
| Inference | false |
### Evaluation Results
#### MTEB AFQMC (default)
- **Task Type**: STS
- **Split**: validation
| Metric | Value |
|--------|-------|
| cosine_pearson | 41.74237700998808 |
| cosine_spearman | 43.4726782647566 |
| euclidean_pearson | 42.244585459479964 |
| euclidean_spearman | 43.525070045169606 |
| main_score | 43.4726782647566 |
| manhattan_pearson | 42.04616728224863 |
| manhattan_spearman | 43.308828270754645 |
| pearson | 41.74237700998808 |
| spearman | 43.4726782647566 |
#### MTEB ArguAna-PL (default)
- **Task Type**: Retrieval
- **Split**: test
| Metric | Value |
|--------|-------|
| main_score | 50.117999999999995 |
| map_at_1 | 24.253 |
| map_at_10 | 40.725 |
| map_at_100 | 41.699999999999996 |
| map_at_1000 | 41.707 |
| map_at_20 | 41.467999999999996 |
| map_at_3 | 35.467 |
| map_at_5 | 38.291 |
| mrr_at_1 | 24.751066856330013 |
| mrr_at_10 | 40.91063808169072 |
| mrr_at_100 | 41.885497923928675 |
| mrr_at_1000 | 41.89301098419842 |
| mrr_at_20 | 41.653552355442514 |
| mrr_at_3 | 35.656709340919775 |
| mrr_at_5 | 38.466097676623946 |
| nauc_map_at_1000_diff1 | 7.503000359807567 |
| nauc_map_at_1000_max | -11.030405164830546 |
| nauc_map_at_1000_std | -8.902792782585117 |
| nauc_map_at_100_diff1 | 7.509899249593199 |
| nauc_map_at_100_max | -11.023581259404406 |
| nauc_map_at_100_std | -8.892241185067272 |
| nauc_map_at_10_diff1 | 7.24369711881512 |
| nauc_map_at_10_max | -10.810000200433278 |
| nauc_map_at_10_std | -8.987230542165776 |
| nauc_map_at_1_diff1 | 11.37175831832417 |
| nauc_map_at_1_max | -13.315221903223055 |
| nauc_map_at_1_std | -9.398199605510275 |
| nauc_map_at_20_diff1 | 7.477364530860648 |
| nauc_map_at_20_max | -10.901251218105566 |
| nauc_map_at_20_std | -8.868148116405925 |
| nauc_map_at_3_diff1 | 6.555548802174882 |
| nauc_map_at_3_max | -12.247274800542934 |
| nauc_map_at_3_std | -9.879475250984811 |
| nauc_map_at_5_diff1 | 7.426588563355882 |
| nauc_map_at_5_max | -11.347695686001805 |
| nauc_map_at_5_std | -9.34441892203972 |
| nauc_mrr_at_1000_diff1 | 5.99737552143614 |
| nauc_mrr_at_1000_max | -11.327205136505727 |
| nauc_mrr_at_1000_std | -8.791079115519503 |
| nauc_mrr_at_100_diff1 | 6.004622525255784 |
| nauc_mrr_at_100_max | -11.320336759899723 |
| nauc_mrr_at_100_std | -8.780602249831777 |
| nauc_mrr_at_10_diff1 | 5.783623516930227 |
| nauc_mrr_at_10_max | -11.095971693467078 |
| nauc_mrr_at_10_std | -8.877242032013582 |
| nauc_mrr_at_1_diff1 | 9.694937537703797 |
| nauc_mrr_at_1_max | -12.531905083727912 |
| nauc_mrr_at_1_std | -8.903992940100146 |
| nauc_mrr_at_20_diff1 | 5.984841206233873 |
| nauc_mrr_at_20_max | -11.195236951048969 |
| nauc_mrr_at_20_std | -8.757266039186018 |
| nauc_mrr_at_3_diff1 | 5.114333824261379 |
| nauc_mrr_at_3_max | -12.64809799843464 |
| nauc_mrr_at_3_std | -9.791146138025184 |
| nauc_mrr_at_5_diff1 | 5.88941606224512 |
| nauc_mrr_at_5_max | -11.763903418071918 |
| nauc_mrr_at_5_std | -9.279175712709446 |
| nauc_ndcg_at_1000_diff1 | 7.076950652226086 |
| nauc_ndcg_at_1000_max | -10.386482092087371 |
| nauc_ndcg_at_1000_std | -8.309190917074046 |
| nauc_ndcg_at_100_diff1 | 7.2329220284865245 |
| nauc_ndcg_at_100_max | -10.208048403220337 |
| nauc_ndcg_at_100_std | -7.997975874274613 |
| nauc_ndcg_at_10_diff1 | 6.065391100006953 |
| nauc_ndcg_at_10_max | -9.046164377601153 |
| nauc_ndcg_at_10_std | -8.34724889697153 |
| nauc_ndcg_at_1_diff1 | 11.37175831832417 |
| nauc_ndcg_at_1_max | -13.315221903223055 |
| nauc_ndcg_at_1_std | -9.398199605510275 |
| nauc_ndcg_at_20_diff1 | 6.949389989202601 |
| nauc_ndcg_at_20_max | -9.35740451760307 |
| nauc_ndcg_at_20_std | -7.761295171828212 |
| nauc_ndcg_at_3_diff1 | 5.051471796151364 |
| nauc_ndcg_at_3_max | -12.158763333711653 |
| nauc_ndcg_at_3_std | -10.078902544421926 |
| nauc_ndcg_at_5_diff1 | 6.527454512611454 |
| nauc_ndcg_at_5_max | -10.525118233848586 |
| nauc_ndcg_at_5_std | -9.120055125584031 |
| nauc_precision_at_1000_diff1 | -10.6495668199151 |
| nauc_precision_at_1000_max | 12.070656425217841 |
| nauc_precision_at_1000_std | 55.844551709649004 |
| nauc_precision_at_100_diff1 | 19.206967129266285 |
| nauc_precision_at_100_max | 16.296851020813456 |
| nauc_precision_at_100_std | 45.60378984257811 |
| nauc_precision_at_10_diff1 | 0.6490335354304879 |
| nauc_precision_at_10_max | 0.5757198255366447 |
| nauc_precision_at_10_std | -4.875847131691451 |
| nauc_precision_at_1_diff1 | 11.37175831832417 |
| nauc_precision_at_1_max | -13.315221903223055 |
| nauc_precision_at_1_std | -9.398199605510275 |
| nauc_precision_at_20_diff1 | 4.899369866929203 |
| nauc_precision_at_20_max | 5.988537297189552 |
| nauc_precision_at_20_std | 4.830900387582837 |
| nauc_precision_at_3_diff1 | 0.8791156910997744 |
| nauc_precision_at_3_max | -11.983373635905993 |
| nauc_precision_at_3_std | -10.646185111581257 |
| nauc_precision_at_5_diff1 | 3.9314486166548432 |
| nauc_precision_at_5_max | -7.798591396895839 |
| nauc_precision_at_5_std | -8.293043407234125 |
| nauc_recall_at_1000_diff1 | -10.649566819918673 |
| nauc_recall_at_1000_max | 12.070656425214647 |
| nauc_recall_at_1000_std | 55.84455170965023 |
| nauc_recall_at_100_diff1 | 19.206967129265127 |
| nauc_recall_at_100_max | 16.296851020813722 |
| nauc_recall_at_100_std | 45.60378984257728 |
| nauc_recall_at_10_diff1 | 0.6490335354304176 |
| nauc_recall_at_10_max | 0.5757198255366095 |
| nauc_recall_at_10_std | -4.875847131691468 |
| nauc_recall_at_1_diff1 | 11.37175831832417 |
| nauc_recall_at_1_max | -13.315221903223055 |
| nauc_recall_at_1_std | -9.398199605510275 |
| nauc_recall_at_20_diff1 | 4.899369866929402 |
| nauc_recall_at_20_max | 5.98853729718968 |
| nauc_recall_at_20_std | 4.830900387582967 |
| nauc_recall_at_3_diff1 | 0.8791156910997652 |
| nauc_recall_at_3_max | -11.983373635905997 |
| nauc_recall_at_3_std | -10.64618511158124 |
| nauc_recall_at_5_diff1 | 3.9314486166548472 |
| nauc_recall_at_5_max | -7.7985913968958585 |
| nauc_recall_at_5_std | -8.293043407234132 |
| ndcg_at_1 | 24.253 |
| ndcg_at_10 | 50.117999999999995 |
| ndcg_at_100 | 54.291999999999994 |
| ndcg_at_1000 | 54.44799999999999 |
| ndcg_at_20 | 52.771 |
| ndcg_at_3 | 39.296 |
| ndcg_at_5 | 44.373000000000005 |
| precision_at_1 | 24.253 |
| precision_at_10 | 8.016 |
| precision_at_100 | 0.984 |
| precision_at_1000 | 0.1 |
| precision_at_20 | 4.527 |
| precision_at_3 | 16.808999999999997 |
| precision_at_5 | 12.546 |
| recall_at_1 | 24.253 |
| recall_at_10 | 80.156 |
| recall_at_100 | 98.43499999999999 |
| recall_at_1000 | 99.57300000000001 |
| recall_at_20 | 90.54100000000001 |
| recall_at_3 | 50.427 |
| recall_at_5 | 62.731 |
#### MTEB DBPedia-PL (default)
- **Task Type**: Retrieval
- **Split**: test
| Metric | Value |
|--------|-------|
| main_score | 34.827000000000005 |
| map_at_1 | 7.049999999999999 |
| map_at_10 | 14.982999999999999 |
| map_at_100 | 20.816000000000003 |
| map_at_1000 | 22.33 |
| map_at_20 | 17.272000000000002 |
| map_at_3 | 10.661 |
| map_at_5 | 12.498 |
| mrr_at_1 | 57.25 |
| mrr_at_10 | 65.81934523809524 |
| mrr_at_100 | 66.2564203928212 |
| mrr_at_1000 | 66.27993662923856 |
| mrr_at_20 | 66.0732139130649 |
| mrr_at_3 | 64.08333333333333 |
| mrr_at_5 | 65.27083333333333 |
| nauc_map_at_1000_diff1 | 16.41780871174038 |
| nauc_map_at_1000_max | 30.193946325654654 |
| nauc_map_at_1000_std | 31.46095497039037 |
| nauc_map_at_100_diff1 | 18.57903165498531 |
| nauc_map_at_100_max | 29.541476938623262 |
| nauc_map_at_100_std | 28.228604103301052 |
| nauc_map_at_10_diff1 | 24.109434489748946 |
| nauc_map_at_10_max | 21.475954208048968 |
| nauc_map_at_10_std | 9.964464537806988 |
| nauc_map_at_1_diff1 | 38.67437644802124 |
| nauc_map_at_1_max | 14.52136658726491 |
| nauc_map_at_1_std | -2.8981666782088755 |
| nauc_map_at_20_diff1 | 21.42547228801935 |
| nauc_map_at_20_max | 25.04510402960458 |
| nauc_map_at_20_std | 16.533079346431155 |
| nauc_map_at_3_diff1 | 26.63648858245477 |
| nauc_map_at_3_max | 13.632235789780415 |
| nauc_map_at_3_std | -0.40129174577700716 |
| nauc_map_at_5_diff1 | 24.513861031197933 |
| nauc_map_at_5_max | 16.599888813946688 |
| nauc_map_at_5_std | 3.4448514739556346 |
| nauc_mrr_at_1000_diff1 | 36.57353464537154 |
| nauc_mrr_at_1000_max | 55.34763483979515 |
| nauc_mrr_at_1000_std | 40.3722796438533 |
| ... | ... |
## 📄 License
This project is licensed under the CC BY-NC 4.0 license.
This README has been translated into English and structured for better readability. It includes key information about the model, its evaluation results on different datasets, and the license details. The evaluation results are presented in tabular form for easy comparison.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models