Instructor Base
基于T5架构的文本嵌入模型,专注于句子相似度计算和文本检索任务,在多个基准测试中表现优异。
下载量 13.22k
发布时间 : 12/20/2022
模型简介
该模型是一个基于T5架构的文本嵌入模型,主要用于生成高质量的句子嵌入向量,支持信息检索、文本分类、聚类和语义相似度计算等多种自然语言处理任务。
模型特点
多任务性能优异
在MTEB基准测试的多个任务中表现优秀,包括分类、聚类和检索任务
高效文本嵌入
能够生成高质量的句子嵌入向量,适用于大规模信息检索场景
广泛适用性
支持多种下游NLP任务,包括相似度计算、分类和聚类等
模型能力
句子相似度计算
文本嵌入生成
信息检索
文本分类
文本聚类
语义搜索
文本重排序
使用案例
电子商务
产品评论分类
对亚马逊产品评论进行情感分析分类
在AmazonPolarity分类任务中达到88.36%准确率
反事实检测
识别亚马逊产品评论中的反事实陈述
在AmazonCounterfactual分类任务中达到86.21%准确率
金融
银行客服分类
对银行客户咨询进行分类
在Banking77分类任务中达到77.04%准确率
学术研究
论文聚类
对arXiv和biorxiv论文进行主题聚类
在ArxivClusteringP2P任务中达到39.68 v_measure分数
🚀 hkunlp/instructor-base
我们推出了 Instructor👨🏫,这是一个经过指令微调的文本嵌入模型。无需任何微调,只需提供任务指令,它就能生成适用于任何任务(如分类、检索、聚类、文本评估等)和领域(如科学、金融等)的文本嵌入。Instructor👨 在 70 个不同的嵌入任务中达到了最优性能!
该模型使用我们定制的 sentence-transformer
库,易于上手。更多详细信息,请查看 我们的论文 和 项目页面!
**************************** 更新内容 ****************************
🚀 快速开始
📦 安装指南
pip install InstructorEmbedding
💻 使用示例
基础用法
计算自定义嵌入:
from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-base')
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
instruction = "Represent the Science title:"
embeddings = model.encode([[instruction,sentence]])
print(embeddings)
高级用法
计算句子相似度
from sklearn.metrics.pairwise import cosine_similarity
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
embeddings_a = model.encode(sentences_a)
embeddings_b = model.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
print(similarities)
信息检索
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
query_embeddings = model.encode(query)
corpus_embeddings = model.encode(corpus)
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
retrieved_doc_id = np.argmax(similarities)
print(retrieved_doc_id)
聚类
import sklearn.cluster
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']]
embeddings = model.encode(sentences)
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
clustering_model.fit(embeddings)
cluster_assignment = clustering_model.labels_
print(cluster_assignment)
📚 详细文档
如果您想为特定句子计算自定义嵌入,可以遵循以下统一模板编写指令:
Represent the domain
text_type
for task_objective
:
domain
是可选的,它指定了文本的领域,例如科学、金融、医学等。text_type
是必需的,它指定了编码单元,例如句子、文档、段落等。task_objective
是可选的,它指定了嵌入的目标,例如检索文档、对句子进行分类等。
📄 许可证
该项目采用 apache-2.0
许可证。
模型指标
属性 | 详情 |
---|---|
模型类型 | 文本嵌入模型 |
训练数据 | 未提及 |
模型在多个任务和数据集上的详细指标如下:
分类任务
数据集 | 准确率 | AP | F1 |
---|---|---|---|
MTEB AmazonCounterfactualClassification (en) | 86.2089552238806 | 55.76273850794966 | 81.26104211414781 |
MTEB AmazonPolarityClassification | 88.35995000000001 | 84.18839957309655 | 88.317619250081 |
MTEB AmazonReviewsClassification (en) | 44.64 | 未提及 | 42.48663956478136 |
MTEB Banking77Classification | 77.03571428571428 | 未提及 | 75.87384305045917 |
MTEB EmotionClassification | 51.760000000000005 | 未提及 | 45.51690565701713 |
MTEB ImdbClassification | 81.1744 | 75.44973697032414 | 81.09901117955782 |
MTEB MTOPDomainClassification (en) | 93.71865025079799 | 未提及 | 93.38906173610519 |
MTEB MTOPIntentClassification (en) | 70.2576379388965 | 未提及 | 49.20405830249464 |
MTEB MassiveIntentClassification (en) | 67.48486886348351 | 未提及 | 64.92199176095157 |
MTEB MassiveScenarioClassification (en) | 72.59246805648958 | 未提及 | 72.1222026389164 |
MTEB ToxicConversationsClassification | 71.8194 | 14.447702451658554 | 55.13659412856185 |
MTEB TweetSentimentExtractionClassification | 63.310696095076416 | 未提及 | 63.360434851097814 |
检索任务
数据集 | MAP@1 | MAP@10 | MAP@100 | MAP@1000 | MRR@1 | MRR@10 | MRR@100 | MRR@1000 | NDCG@1 | NDCG@10 | NDCG@100 | NDCG@1000 | 准确率@1 | 准确率@10 | 准确率@100 | 准确率@1000 | 召回率@1 | 召回率@10 | 召回率@100 | 召回率@1000 | 召回率@3 | 召回率@5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MTEB ArguAna | 27.383000000000003 | 43.024 | 44.023 | 44.025999999999996 | 28.094 | 43.315 | 44.313 | 44.317 | 27.383000000000003 | 52.032000000000004 | 56.19499999999999 | 56.272 | 27.383000000000003 | 8.087 | 0.989 | 0.099 | 27.383000000000003 | 80.868 | 98.86200000000001 | 99.431 | 51.28 | 65.22 |
MTEB CQADupstackAndroidRetrieval | 33.739999999999995 | 46.197 | 47.814 | 47.934 | 41.059 | 52.292 | 52.978 | 53.015 | 41.059 | 52.608 | 57.965 | 59.775999999999996 | 41.059 | 9.943 | 1.6070000000000002 | 0.20500000000000002 | 33.739999999999995 | 63.888999999999996 | 85.832 | 97.475 | 51.953 | 57.498000000000005 |
MTEB CQADupstackEnglishRetrieval | 31.169999999999998 | 41.455 | 42.716 | 42.847 | 39.427 | 47.818 | 48.519 | 48.558 | 39.427 | 47.181 | 51.737 | 53.74 | 39.427 | 8.847 | 1.425 | 0.189 | 31.169999999999998 | 56.971000000000004 | 76.31400000000001 | 88.93900000000001 | 45.208 | 49.923 |
MTEB CQADupstackGamingRetrieval | 39.682 | 52.766000000000005 | 53.84100000000001 | 53.898 | 45.266 | 56.093 | 56.763 | 56.793000000000006 | 45.266 | 58.836 | 62.863 | 63.912 | 45.266 | 9.492 | 1.236 | 0.13699999999999998 | 39.682 | 73.233 | 90.335 | 97.452 | 58.562000000000005 | 65.569 |
MTEB CQADupstackGisRetrieval | 26.743 | 34.016000000000005 | 35.028999999999996 | 35.113 | 28.927000000000003 | 36.32 | 37.221 | 37.281 | 28.927000000000003 | 38.474000000000004 | 43.580000000000005 | 45.64 | 28.927000000000003 | 5.74 | 0.8710000000000001 | 0.108 | 26.743 | 49.955 | 73.904 | 89.133 | 38.072 | 43.266 |
MTEB CQADupstackMathematicaRetrieval | 16.928 | 23.549 | 24.887 | 25.018 | 21.02 | 27.898 | 29.018 | 29.099999999999998 | 21.02 | 28.277 | 34.54 | 37.719 | 21.02 | 5.361 | 0.9809999999999999 | 0.13899999999999998 | 16.928 | 38.601 | 65.759 | 88.543 | 25.556 | 30.447000000000003 |
MTEB CQADupstackPhysicsRetrieval | 28.549000000000003 | 38.426 | 39.845000000000006 | 39.956 | 35.034 | 44.041000000000004 | 44.95 | 44.997 | 35.034 | 44.218 | 49.958000000000006 | 52.019000000000005 | 35.034 | 7.911 | 1.26 | 0.16 | 28.549000000000003 | 56.035999999999994 | 79.701 | 93.149 | 42.275 | 49.097 |
MTEB CQADupstackProgrammersRetrieval | 29.391000000000002 | 39.48 | 40.727000000000004 | 40.835 | 35.959 | 44.726 | 45.531 | 45.582 | 35.959 | 45.303 | 50.683 | 52.818 | 35.959 | 8.241999999999999 | 1.274 | 0.163 | 29.391000000000002 | 57.364000000000004 | 80.683 | 94.918 | 42.263 | 48.634 |
MTEB CQADupstackRetrieval | 26.791749999999997 | 35.75541666666667 | 37.00791666666667 | 37.12408333333333 | 31.744333333333337 | 39.9925 | 40.86458333333333 | 40.92175000000001 | 31.744333333333337 | 40.95008333333334 | 46.25966666666667 | 48.535333333333334 | 31.744333333333337 | 7.135166666666666 | 1.1535833333333334 | 0.15391666666666665 | 26.791749999999997 | 51.98625 | 75.30358333333334 | 91.05433333333333 | 39.39583333333333 | 45.05925 |
MTEB CQADupstackStatsRetrieval | 22.219 | 29.162 | 30.049999999999997 | 30.144 | 25.153 | 31.814999999999998 | 32.573 | 32.645 | 25.153 | 33.099000000000004 | 37.768 | 40.331 | 25.153 | 5.183999999999999 | 0.8170000000000001 | 0.11100000000000002 | 22.219 | 42.637 | 64.704 | 83.963 | 32.444 | 36.802 |
MTEB CQADupstackTexRetrieval | 17.427999999999997 | 24.029 | 25.119999999999997 | 25.257 | 21.129 | 27.750000000000004 | 28.666999999999998 | 28.754999999999995 | 21.129 | 28.203 | 33.44 | 36.61 | 21.129 | 5.055 | 0.909 | 0.13699999999999998 | 17.427999999999997 | 36.923 | 60.606 | 83.19 | 26.845000000000002 | 31.247000000000003 |
MTEB CQADupstackUnixRetrieval | 26.457000000000004 | 35.228 | 36.475 | 36.585 | 30.784 | 39.133 | 40.11 | 40.169 | 30.784 | 40.358 | 46.119 | 48.428 | 30.784 | 6.800000000000001 | 1.083 | 0.13899999999999998 | 26.457000000000004 | 51.845 | 77.046 | 92.892 | 38.89 | 44.688 |
MTEB CQADupstackWebmastersRetrieval | 29.378999999999998 | 37.373 | 39.107 | 39.317 | 35.178 | 42.44 | 43.434 | 43.482 | 35.178 | 42.82 | 48.935 | 51.28 | 35.178 | 7.945 | 1.524 | 0.242 | 29.378999999999998 | 52.141999999999996 | 79.49000000000001 | 93.782 | 39.579 | 45.462 |
MTEB CQADupstackWordpressRetrieval | 19.814999999999998 | 27.383999999999997 | 28.483999999999998 | 28.585 | 21.996 | 29.584 | 30.611 | 30.684 | 21.996 | 32.024 | 37.528 | 40.150999999999996 | 21.996 | 5.102 | 0.856 | 0.117 | 19.814999999999998 | 44.239 | 69.269 | 89.216 | 31.102999999999998 | 38.078 |
MTEB ClimateFEVER | 11.349 | 19.436 | 21.282999999999998 | 21.479 | 25.863000000000003 | 37.218 | 38.198 | 38.236 | 25.863000000000003 | 27.953 | 35.327 | 38.708999999999996 | 25.863000000000003 | 8.99 | 1.6889999999999998 | 0.232 | 11.349 | 34.581 | 60.178 | 78.88199999999999 | 20.041999999999998 | 25.458 |
MTEB DBPedia | 7.893 | 15.457 | 20.905 | 22.116 | 57.49999999999999 | 65.467 | 66.022 | 66.039 | 45.875 | 33.344 | 36.849 | 44.03 | 57.49999999999999 | 25.95 | 7.89 | 1.669 | 7.893 | 20.724999999999998 | 42.516 | 65.822 | 12.615000000000002 | 15.482000000000001 |
MTEB FEVER | 53.882 | 65.902 | 66.33 | 66.348 | 58.041 | 70.133 | 70.463 | 70.47 | 58.041 | 71.84700000000001 | 73.699 | 74.06700000000001 | 58.041 | 9.427000000000001 | 1.049 | 0.11 | 53.882 | 85.99 | 94.09100000000001 | 96.612 | 75.25 | 80.997 |
MTEB FiQA2018 | 19.165 | 31.845000000000002 | 33.678999999999995 | 33.878 | 38.272 | 47.04 | 47.923 | 47.973 | 38.272 | 39.177 | 45.995000000000005 | 49.312 | 38.272 | 10.926 | 1.809 | 0.23700000000000002 | 19.165 | 45.103 | 70.295 | 90.592 | 32.832 | 37.905 |
MTEB HotpotQA | 32.397 | 44.83 | 45.716 | 45.797 | 64.794 | 71.866 | 72.22 | 72.238 | 64.794 | 54.186 | 57.623000000000005 | 59.302 | 64.794 | 11.219 | 1.394 | 0.16199999999999998 | 32.397 | 56.096999999999994 | 69.696 | 80.88499999999999 | 46.150999999999996 | 50.993 |
MTEB MSMARCO | 19.519000000000002 | 31.025000000000002 | 32.275999999999996 | 32.329 | 20.115 | 31.569000000000003 | 32.768 | 32.816 | 20.115 | 37.756 | 43.858000000000004 | 45.199 | 20.115 | 6.122 | 0.919 | 0.10300000000000001 | 19.519000000000002 | 58.62500000000001 | 86.99 | 97.268 | 37.002 | 46.778 |
MTEB NFCorpus | 5.185 | 11.158 | 14.041 | 15.360999999999999 | 44.582 | 53.083999999999996 | 53.787 | 53.824000000000005 | 42.57 | 31.593 | 29.093999999999998 | 37.909 | 43.963 | 23.498 | 7.6160000000000005 | 2.032 | 5.185 | 15.234 | 29.49 | 62.273999999999994 | 9.55 | 11.103 |
MTEB NQ | 23.803 | 38.183 | 39.421 | 39.464 | 26.68 | 40.439 | 41.415 | 41.443999999999996 | 26.68 | 45.882 | 51.227999999999994 | 52.207 | 26.68 | 7.9750000000000005 | 1.0959999999999999 | 0.11900000000000001 | 23.803 | 67.152 | 90.522 | 97.743 | 45.338 | 55.106 |
MTEB QuoraRetrieval | 70.473 | 84.452 | 85.101 | 85.115 | 81.19 | 87.324 | 87.434 | 87.435 | 81.21000000000001 | 88.19 | 89.44 | 89.526 | 81.21000000000001 | 13.417000000000002 | 1.537 | 0.157 | 70.473 | 95.367 | 99.616 | 99.996 | 86.936 | 91.557 |
MTEB SciFact | 44.583 | 52.978 | 53.803 | 53.839999999999996 | 47.0 | 54.730000000000004 | 55.31399999999999 | 55.346 | 47.0 | 57.82899999999999 | 61.49400000000001 | 62.676 | 47.0 | 7.867 | 0.997 | 0.11 | 44.583 | 71.172 | 87.7 | 97.333 | 56.511 | 64.206 |
MTEB TRECCOVID | 0.2 | 1.398 | 7.406 | 18.401 | 70.0 | 79.25999999999999 | 79.25999999999999 | 79.25999999999999 | 63.0 | 58.548 | 45.216 | 41.149 | 70.0 | 64.0 | 46.92 | 18.642 | 0.2 | 1.6729999999999998 | 10.856 | 38.964999999999996 | 0.504 | 0.852 |
MTEB Touche2020 | 1.6629999999999998 | 8.601 | 14.354 | 15.927 | 18.367 | 34.466 | 35.235 | 35.27 | 14.285999999999998 | 20.374 | 33.532000000000004 | 45.561 | 18.367 | 20.204 | 7.489999999999999 | 1.5630000000000002 | 1.6629999999999998 | 15.549 | 47.497 | 84.524 | 5.289 | 8.035 |
聚类任务
数据集 | V-measure |
---|---|
MTEB ArxivClusteringP2P | 39.68441054431849 |
MTEB ArxivClusteringS2S | 29.188539728343844 |
MTEB BiorxivClusteringP2P | 32.98041170516364 |
MTEB BiorxivClusteringS2S | 25.71652988451154 |
MTEB MedrxivClusteringP2P | 30.887642595096825 |
MTEB MedrxivClusteringS2S | 28.3764418784054 |
MTEB RedditClustering | 59.25776525253911 |
MTEB RedditClusteringP2P | 63.22135271663078 |
MTEB StackExchangeClustering | 65.0394225901397 |
MTEB StackExchangeClusteringP2P | 35.27954189859326 |
MTEB TwentyNewsgroupsClustering | 51.30677907335145 |
重排序任务
数据集 | MAP | MRR |
---|---|---|
MTEB AskUbuntuDupQuestions | 63.173362687519784 | 76.18860748362133 |
MTEB SciDocsRR | 78.82761687254882 | 93.46223674655047 |
MTEB StackOverflowDupQuestions | 50.99055979974896 | 51.82745257193787 |
STS任务
数据集 | 余弦相似度斯皮尔曼相关系数 |
---|---|
MTEB BIOSSES | 82.30789953771232 |
MTEB SICK-R | 80.25888668589654 |
MTEB STS12 | 77.02037527837669 |
MTEB STS13 | 86.58432681008449 |
MTEB STS14 | 81.31697756099051 |
MTEB STS15 | 88.18867599667057 |
MTEB STS16 | 84.87853941747623 |
MTEB STS17 (en-en) | 89.46479925383916 |
MTEB STS22 (en) | 66.45272113649146 |
MTEB STSBenchmark | 86.43357313527851 |
成对分类任务
数据集 | 余弦相似度准确率 | 余弦相似度AP | 余弦相似度F1 | 余弦相似度精确率 | 余弦相似度召回率 | 点积准确率 | 点积AP | 点积F1 | 点积精确率 | 点积召回率 | 欧几里得距离准确率 | 欧几里得距离AP | 欧几里得距离F1 | 欧几里得距离精确率 | 欧几里得距离召回率 | 曼哈顿距离准确率 | 曼哈顿距离AP | 曼哈顿距离F1 | 曼哈顿距离精确率 | 曼哈顿距离召回率 | 最大值准确率 | 最大值AP | 最大值F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MTEB SprintDuplicateQuestions | 99.66237623762376 | 90.35465126226322 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.66237623762376 | 90.35464287920453 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.66237623762376 | 90.3546512622632 | 82.44575936883628 | 81.32295719844358 | 83.6 | 99.65940594059406 | 90.29220174849843 | 82.4987605354487 | 81.80924287118977 | 83.2 | 99.66237623762376 | 90.35465126226322 | 82.4987605354487 |
MTEB TwitterSemEval2015 | 86.12386004649221 | 73.99096426215495 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.12386004649221 | 73.99096813038672 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.12386004649221 | 73.99095984980165 | 68.18416968442834 | 66.86960933536275 | 69.55145118733509 | 86.09405734040651 | 73.96825745608601 | 68.13888179729383 | 65.99901088031652 | 70.42216358839049 | 86.12386004649221 | 73.99096813038672 | 68.18416968442834 |
MTEB TwitterURLCorpus | 88.99367407924865 | 86.19720829843081 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.99367407924865 | 86.19718471454047 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.99367407924865 | 86.1972021422436 | 78.39889075384951 | 74.5110278818144 | 82.71481367416075 | 88.95680521597392 | 86.16659921351506 | 78.39125971550081 | 74.82502799552073 | 82.31444410224823 | 88.99367407924865 | 86.19720829843081 | 78.39889075384951 |
摘要任务
数据集 | 余弦相似度皮尔逊相关系数 | 余弦相似度斯皮尔曼相关系数 | 点积皮尔逊相关系数 | 点积斯皮尔曼相关系数 |
---|---|---|---|---|
MTEB SummEval | 30.21655465344237 | 29.853205339630172 | 30.216540628083564 | 29.868978894753027 |
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98