🚀 用于MS Marco的交叉编码器
本模型针对MS Marco段落排序任务进行训练。该模型可用于信息检索,即给定一个查询,将查询与所有可能的段落(例如通过ElasticSearch检索得到的段落)进行编码,然后按降序对段落进行排序。更多详细信息请参考SBERT.net检索与重排序。训练代码可在此处获取:SBERT.net训练MS Marco。
🚀 快速开始
本模型可用于信息检索,具体流程为:给定一个查询,将该查询与所有可能的段落(例如通过ElasticSearch检索得到的段落)进行编码,然后按降序对段落进行排序。更多详细信息请参考SBERT.net检索与重排序。训练代码可在此处获取:SBERT.net训练MS Marco。
✨ 主要特性
- 针对MS Marco段落排序任务进行训练,适用于信息检索场景。
- 提供了使用SentenceTransformers和Transformers库的使用示例,方便不同用户使用。
- 给出了多种预训练交叉编码器在不同数据集上的性能指标,便于用户选择合适的模型。
📦 安装指南
若要使用本模型,需要安装相关库。若使用SentenceTransformers库,可参考其官方文档进行安装:SentenceTransformers。
💻 使用示例
基础用法
当你安装了SentenceTransformers库后,使用起来非常简单。你可以像下面这样使用预训练模型:
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
scores = model.predict([
("How many people live in Berlin?", "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers."),
("How many people live in Berlin?", "Berlin is well known for its museums."),
])
print(scores)
高级用法
使用Transformers库的示例代码如下:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L6-v2')
tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L6-v2')
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
用于MS Marco的交叉编码器 |
训练数据 |
sentence-transformers/msmarco |
基础模型 |
cross-encoder/ms-marco-MiniLM-L12-v2 |
管道标签 |
文本排序 |
库名称 |
sentence-transformers |
标签 |
transformers |
性能表现
以下表格展示了各种预训练交叉编码器在TREC深度学习2019和MS Marco段落重排序数据集上的性能。
模型名称 |
TREC DL 19的NDCG@10 |
MS Marco Dev的MRR@10 |
每秒处理文档数 |
版本2模型 |
|
|
|
cross-encoder/ms-marco-TinyBERT-L2-v2 |
69.84 |
32.56 |
9000 |
cross-encoder/ms-marco-MiniLM-L2-v2 |
71.01 |
34.85 |
4100 |
cross-encoder/ms-marco-MiniLM-L4-v2 |
73.04 |
37.70 |
2500 |
cross-encoder/ms-marco-MiniLM-L6-v2 |
74.30 |
39.01 |
1800 |
cross-encoder/ms-marco-MiniLM-L12-v2 |
74.31 |
39.02 |
960 |
版本1模型 |
|
|
|
cross-encoder/ms-marco-TinyBERT-L2 |
67.43 |
30.15 |
9000 |
cross-encoder/ms-marco-TinyBERT-L4 |
68.09 |
34.50 |
2900 |
cross-encoder/ms-marco-TinyBERT-L6 |
69.57 |
36.13 |
680 |
cross-encoder/ms-marco-electra-base |
71.99 |
36.41 |
340 |
其他模型 |
|
|
|
nboost/pt-tinybert-msmarco |
63.63 |
28.80 |
2900 |
nboost/pt-bert-base-uncased-msmarco |
70.94 |
34.75 |
340 |
nboost/pt-bert-large-msmarco |
73.36 |
36.48 |
100 |
Capreolus/electra-base-msmarco |
71.23 |
36.89 |
340 |
amberoad/bert-multilingual-passage-reranking-msmarco |
68.40 |
35.54 |
330 |
sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco |
72.82 |
37.88 |
720 |
注意:运行时间是在V100 GPU上计算得出的。
📄 许可证
本项目采用Apache-2.0许可证。