20220412 203254
2
20220412 203254
由lilitket開發
該模型是基於facebook/wav2vec2-xls-r-300m在common_voice數據集上微調的語音識別模型,支持自動語音識別任務。
下載量 18
發布時間 : 4/12/2022
模型概述
這是一個基於wav2vec2-xls-r-300m架構的語音識別模型,經過在common_voice數據集上的微調,能夠將語音轉換為文本。
模型特點
高效微調
基於預訓練的wav2vec2-xls-r-300m模型進行微調,充分利用大規模預訓練的優勢
低詞錯誤率
在評估集上取得了1.0019的詞錯誤率(WER),表現優異
混合精度訓練
採用原生AMP混合精度訓練技術,提高訓練效率
模型能力
語音轉文本
自動語音識別
使用案例
語音轉錄
會議記錄自動轉錄
將會議錄音自動轉換為文字記錄
詞錯誤率低至1.0019
語音助手
用於語音助手系統中的語音識別模塊
🚀 20220412-203254
該模型是 facebook/wav2vec2-xls-r-300m 在 Common Voice 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值:5.0428
- 字錯率(WER):1.0019
🚀 快速開始
此模型是在 Common Voice 數據集上對 facebook/wav2vec2-xls-r-300m 進行微調得到的。你可以利用它在語音識別任務中獲得較好的效果。
📚 詳細文檔
訓練和評估數據
使用了 Common Voice 數據集進行訓練和評估,但具體數據細節暫未提供。
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:6e-06
- 訓練批次大小:1
- 評估批次大小:8
- 隨機種子:42
- 優化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 學習率調度器類型:線性
- 學習率調度器熱身步數:2000
- 訓練輪數:1200
- 混合精度訓練:Native AMP
訓練結果
訓練損失 | 輪數 | 步數 | 驗證損失 | 字錯率(WER) |
---|---|---|---|---|
16.9455 | 1.5 | 200 | 16.4676 | 1.2534 |
15.444 | 3.01 | 400 | 14.1207 | 1.0 |
9.5452 | 4.51 | 600 | 8.4030 | 1.0 |
6.2565 | 6.02 | 800 | 6.5233 | 1.0 |
5.2827 | 7.52 | 1000 | 5.6058 | 1.0 |
4.7652 | 9.02 | 1200 | 4.9765 | 1.0 |
4.3803 | 10.53 | 1400 | 4.4565 | 1.0 |
4.0005 | 12.03 | 1600 | 4.0224 | 1.0 |
3.7041 | 13.53 | 1800 | 3.6903 | 1.0 |
3.4991 | 15.04 | 2000 | 3.4642 | 1.0 |
3.34 | 16.54 | 2200 | 3.3425 | 1.0 |
3.2352 | 18.05 | 2400 | 3.2617 | 1.0 |
3.1867 | 19.55 | 2600 | 3.2358 | 1.0 |
3.161 | 21.05 | 2800 | 3.2289 | 1.0 |
3.145 | 22.56 | 3000 | 3.2023 | 1.0 |
3.1203 | 24.06 | 3200 | 3.1964 | 1.0 |
3.1109 | 25.56 | 3400 | 3.1844 | 1.0 |
3.0958 | 27.07 | 3600 | 3.1839 | 1.0 |
3.0732 | 28.57 | 3800 | 3.2058 | 1.0 |
3.0535 | 30.08 | 4000 | 3.1843 | 1.0 |
3.0243 | 31.58 | 4200 | 3.1992 | 1.0 |
2.9829 | 33.08 | 4400 | 3.2019 | 1.0 |
2.9219 | 34.59 | 4600 | 3.2346 | 1.0 |
2.8313 | 36.09 | 4800 | 3.2781 | 1.0 |
2.7186 | 37.59 | 5000 | 3.3056 | 1.0 |
2.5745 | 39.1 | 5200 | 3.3554 | 1.0 |
2.4028 | 40.6 | 5400 | 3.4331 | 1.0 |
2.2645 | 42.11 | 5600 | 3.4418 | 1.0 |
2.1303 | 43.61 | 5800 | 3.5584 | 1.0 |
2.0257 | 45.11 | 6000 | 3.5943 | 1.0 |
1.9223 | 46.62 | 6200 | 3.6767 | 1.0 |
1.8344 | 48.12 | 6400 | 3.7363 | 1.0 |
1.7574 | 49.62 | 6600 | 3.8921 | 1.0 |
1.67 | 51.13 | 6800 | 3.9054 | 1.0 |
1.6118 | 52.63 | 7000 | 4.0352 | 1.0 |
1.5372 | 54.14 | 7200 | 3.9742 | 1.0 |
1.4846 | 55.64 | 7400 | 4.1078 | 1.0 |
1.4093 | 57.14 | 7600 | 4.1705 | 1.0 |
1.3379 | 58.65 | 7800 | 4.2737 | 1.0 |
1.28 | 60.15 | 8000 | 4.3662 | 1.0 |
1.2268 | 61.65 | 8200 | 4.4278 | 1.0 |
1.1641 | 63.16 | 8400 | 4.4831 | 1.0 |
1.1058 | 64.66 | 8600 | 4.5354 | 1.0 |
1.0596 | 66.17 | 8800 | 4.5983 | 1.0 |
0.9953 | 67.67 | 9000 | 4.7143 | 1.0 |
0.9406 | 69.17 | 9200 | 4.8536 | 1.0 |
0.9022 | 70.68 | 9400 | 4.7732 | 1.0 |
0.8551 | 72.18 | 9600 | 4.8929 | 1.0 |
0.8103 | 73.68 | 9800 | 4.9513 | 1.0 |
0.7665 | 75.19 | 10000 | 4.9530 | 1.0 |
0.7215 | 76.69 | 10200 | 5.1471 | 1.0 |
0.6906 | 78.2 | 10400 | 5.2295 | 1.0 |
0.6354 | 79.7 | 10600 | 5.1287 | 1.0 |
0.6196 | 81.2 | 10800 | 5.2081 | 1.0 |
0.6026 | 82.71 | 11000 | 5.4323 | 1.0 |
0.5726 | 84.21 | 11200 | 5.3907 | 1.0 |
0.5348 | 85.71 | 11400 | 5.5669 | 1.0 |
0.5344 | 87.22 | 11600 | 5.5685 | 1.0 |
0.4849 | 88.72 | 11800 | 5.5814 | 1.0 |
0.4689 | 90.23 | 12000 | 5.6186 | 1.0 |
0.4646 | 91.73 | 12200 | 5.4834 | 1.0 |
0.4266 | 93.23 | 12400 | 5.6463 | 1.0 |
0.4424 | 94.74 | 12600 | 5.6562 | 1.0 |
0.3865 | 96.24 | 12800 | 5.7463 | 1.0 |
0.3914 | 97.74 | 13000 | 5.7014 | 1.0 |
0.3661 | 99.25 | 13200 | 5.7543 | 1.0 |
0.3582 | 100.75 | 13400 | 5.9172 | 1.0 |
0.3571 | 102.26 | 13600 | 5.5968 | 1.0 |
0.3343 | 103.76 | 13800 | 5.3691 | 1.0 |
0.3123 | 105.26 | 14000 | 5.8917 | 1.0 |
0.3089 | 106.77 | 14200 | 5.8054 | 1.0 |
0.3078 | 108.27 | 14400 | 5.9066 | 1.0 |
0.3076 | 109.77 | 14600 | 5.7379 | 1.0 |
0.2924 | 111.28 | 14800 | 5.7931 | 1.0 |
0.2925 | 112.78 | 15000 | 5.9529 | 1.0 |
0.2839 | 114.29 | 15200 | 5.9881 | 1.0 |
0.2599 | 115.79 | 15400 | 6.0081 | 1.0 |
0.2685 | 117.29 | 15600 | 6.1049 | 1.0 |
0.2557 | 118.8 | 15800 | 6.1154 | 1.0 |
0.2688 | 120.3 | 16000 | 5.9336 | 1.0 |
0.2422 | 121.8 | 16200 | 6.0492 | 1.0 |
0.2408 | 123.31 | 16400 | 6.3155 | 1.0 |
0.2423 | 124.81 | 16600 | 6.3437 | 1.0 |
0.2421 | 126.32 | 16800 | 6.0979 | 1.0 |
0.2212 | 127.82 | 17000 | 5.5551 | 1.0 |
0.2239 | 129.32 | 17200 | 5.9007 | 1.0 |
0.2101 | 130.83 | 17400 | 6.0142 | 1.0 |
0.2097 | 132.33 | 17600 | 5.8984 | 1.0 |
0.2064 | 133.83 | 17800 | 5.9705 | 1.0 |
0.1898 | 135.34 | 18000 | 5.9915 | 1.0 |
0.2053 | 136.84 | 18200 | 6.1079 | 1.0 |
0.1822 | 138.35 | 18400 | 6.1324 | 1.0 |
0.1867 | 139.85 | 18600 | 6.1122 | 1.0 |
0.1831 | 141.35 | 18800 | 6.1476 | 1.0 |
0.1935 | 142.86 | 19000 | 5.7248 | 1.0 |
0.1983 | 144.36 | 19200 | 6.1466 | 1.0 |
0.176 | 145.86 | 19400 | 5.9555 | 1.0 |
0.1778 | 147.37 | 19600 | 6.1434 | 1.0 |
0.1758 | 148.87 | 19800 | 6.2104 | 1.0 |
0.1799 | 150.38 | 20000 | 6.0933 | 1.0 |
0.1674 | 151.88 | 20200 | 6.0476 | 1.0 |
0.1777 | 153.38 | 20400 | 5.8937 | 1.0 |
0.1616 | 154.89 | 20600 | 6.4417 | 1.0 |
0.1498 | 156.39 | 20800 | 6.3136 | 1.0 |
0.1607 | 157.89 | 21000 | 5.9295 | 1.0 |
0.1445 | 159.4 | 21200 | 6.2741 | 1.0 |
0.1636 | 160.9 | 21400 | 6.1931 | 1.0 |
0.1488 | 162.41 | 21600 | 6.0089 | 1.0 |
0.1549 | 163.91 | 21800 | 5.6184 | 1.0 |
0.1532 | 165.41 | 22000 | 6.1250 | 1.0 |
0.1581 | 166.92 | 22200 | 6.2635 | 1.0 |
0.146 | 168.42 | 22400 | 6.0498 | 1.0 |
0.148 | 169.92 | 22600 | 6.3486 | 1.0 |
0.1489 | 171.43 | 22800 | 6.1659 | 1.0 |
0.1464 | 172.93 | 23000 | 6.2259 | 1.0 |
0.139 | 174.44 | 23200 | 6.2796 | 1.0 |
0.1357 | 175.94 | 23400 | 6.2119 | 1.0 |
0.1435 | 177.44 | 23600 | 6.5722 | 1.0 |
0.1172 | 178.95 | 23800 | 6.4221 | 1.0 |
0.1539 | 180.45 | 24000 | 6.3963 | 1.0 |
0.1389 | 181.95 | 24200 | 6.2367 | 1.0 |
0.1274 | 183.46 | 24400 | 6.3693 | 1.0 |
0.1295 | 184.96 | 24600 | 6.0819 | 1.0 |
0.1337 | 186.47 | 24800 | 6.1525 | 1.0 |
0.1303 | 187.97 | 25000 | 6.2520 | 1.0 |
0.141 | 189.47 | 25200 | 6.5302 | 1.0 |
0.1322 | 190.98 | 25400 | 6.3731 | 1.0 |
0.1313 | 192.48 | 25600 | 6.3570 | 1.0 |
0.1178 | 193.98 | 25800 | 6.1667 | 1.0 |
0.1277 | 195.49 | 26000 | 6.1352 | 1.0 |
0.1169 | 196.99 | 26200 | 6.3132 | 1.0 |
0.1199 | 198.5 | 26400 | 6.6116 | 1.0 |
0.1138 | 200.0 | 26600 | 6.4862 | 1.0 |
0.1129 | 201.5 | 26800 | 6.3442 | 1.0 |
0.1142 | 203.01 | 27000 | 6.5077 | 1.0 |
0.1169 | 204.51 | 27200 | 6.5710 | 1.0 |
0.111 | 206.02 | 27400 | 6.0623 | 1.0 |
0.1198 | 207.52 | 27600 | 6.4331 | 1.0 |
0.1108 | 209.02 | 27800 | 5.9192 | 1.0 |
0.1121 | 210.53 | 28000 | 6.0724 | 1.0 |
0.1171 | 212.03 | 28200 | 6.3363 | 1.0 |
0.1188 | 213.53 | 28400 | 6.3704 | 1.0 |
0.104 | 215.04 | 28600 | 6.5802 | 1.0 |
0.1125 | 216.54 | 28800 | 5.4428 | 1.0 |
0.1115 | 218.05 | 29000 | 6.4286 | 1.0 |
0.1109 | 219.55 | 29200 | 6.6998 | 1.0 |
0.1061 | 221.05 | 29400 | 6.3761 | 1.0 |
0.1161 | 222.56 | 29600 | 5.8712 | 1.0 |
0.1091 | 224.06 | 29800 | 6.1844 | 1.0 |
0.0947 | 225.56 | 30000 | 6.5670 | 1.0 |
0.1004 | 227.07 | 30200 | 6.2302 | 1.0 |
0.1099 | 228.57 | 30400 | 6.4218 | 1.0 |
0.1154 | 230.08 | 30600 | 6.4911 | 1.0 |
0.0999 | 231.58 | 30800 | 6.4390 | 1.0 |
0.1068 | 233.08 | 31000 | 6.2367 | 1.0 |
0.1015 | 234.59 | 31200 | 6.0790 | 1.0 |
0.0958 | 236.09 | 31400 | 5.9926 | 1.0 |
0.1183 | 237.59 | 31600 | 6.3400 | 1.0 |
0.0833 | 239.1 | 31800 | 6.4481 | 1.0 |
0.0874 | 240.6 | 32000 | 6.4535 | 1.0 |
0.0958 | 242.11 | 32200 | 6.0597 | 1.0 |
0.1075 | 243.61 | 32400 | 6.3403 | 1.0 |
0.0909 | 245.11 | 32600 | 6.1297 | 1.0 |
0.1093 | 246.62 | 32800 | 6.2232 | 1.0 |
0.0995 | 248.12 | 33000 | 6.7110 | 1.0 |
0.1061 | 249.62 | 33200 | 5.8551 | 1.0 |
0.0872 | 251.13 | 33400 | 6.0338 | 1.0 |
0.109 | 252.63 | 33600 | 6.2880 | 1.0 |
0.0976 | 254.14 | 33800 | 5.9304 | 1.0 |
0.0977 | 255.64 | 34000 | 6.4527 | 1.0 |
0.0895 | 257.14 | 34200 | 6.3178 | 1.0 |
0.0951 | 258.65 | 34400 | 6.3646 | 1.0 |
0.0942 | 260.15 | 34600 | 6.4405 | 1.0 |
0.0876 | 261.65 | 34800 | 5.8373 | 1.0 |
0.0877 | 263.16 | 35000 | 6.5296 | 1.0 |
0.0896 | 264.66 | 35200 | 6.6644 | 1.0 |
0.0938 | 266.17 | 35400 | 6.4721 | 1.0 |
0.0864 | 267.67 | 35600 | 7.0132 | 1.0 |
0.0897 | 269.17 | 35800 | 6.3767 | 1.0 |
0.094 | 270.68 | 36000 | 6.1663 | 1.0 |
0.0782 | 272.18 | 36200 | 5.7325 | 1.0 |
0.0878 | 273.68 | 36400 | 6.0681 | 1.0 |
0.0877 | 275.19 | 36600 | 6.2621 | 1.0 |
0.0827 | 276.69 | 36800 | 5.9692 | 1.0 |
0.0929 | 278.2 | 37000 | 6.0207 | 1.0 |
0.0899 | 279.7 | 37200 | 5.4185 | 1.0 |
0.0841 | 281.2 | 37400 | 5.9206 | 1.0 |
0.0924 | 282.71 | 37600 | 6.1820 | 1.0 |
0.0844 | 284.21 | 37800 | 6.1505 | 1.0 |
0.0824 | 285.71 | 38000 | 6.1564 | 1.0 |
0.0842 | 287.22 | 38200 | 5.9483 | 1.0 |
0.0863 | 288.72 | 38400 | 5.9305 | 1.0 |
0.0851 | 290.23 | 38600 | 5.8416 | 1.0 |
0.079 | 291.73 | 38800 | 5.7345 | 1.0 |
0.081 | 293.23 | 39000 | 5.7323 | 1.0 |
0.0873 | 294.74 | 39200 | 5.9131 | 1.0 |
0.0836 | 296.24 | 39400 | 6.1722 | 1.0 |
0.0774 | 297.74 | 39600 | 5.9523 | 1.0 |
0.0902 | 299.25 | 39800 | 5.8769 | 1.0 |
0.0766 | 300.75 | 40000 | 6.2435 | 1.0 |
0.0766 | 302.26 | 40200 | 5.7556 | 1.0 |
0.0723 | 303.76 | 40400 | 5.4647 | 1.0 |
0.0724 | 305.26 | 40600 | 6.0184 | 1.0 |
0.0834 | 306.77 | 40800 | 5.8434 | 1.0 |
0.0846 | 308.27 | 41000 | 6.0586 | 1.0 |
0.0878 | 309.77 | 41200 | 5.7270 | 1.0 |
0.0761 | 311.28 | 41400 | 5.7259 | 1.0 |
0.0639 | 312.78 | 41600 | 6.0848 | 1.0 |
0.0733 | 314.29 | 41800 | 6.0474 | 1.0 |
0.0734 | 315.79 | 42000 | 5.9387 | 1.0 |
0.0779 | 317.29 | 42200 | 5.6040 | 1.0 |
0.0713 | 318.8 | 42400 | 6.3136 | 1.0 |
0.0756 | 320.3 | 42600 | 5.8936 | 1.0 |
0.0758 | 321.8 | 42800 | 6.3659 | 1.0 |
0.0662 | 323.31 | 43000 | 5.8035 | 1.0 |
0.0714 | 324.81 | 43200 | 5.3194 | 1.0 |
0.0782 | 326.32 | 43400 | 6.0054 | 1.0 |
0.0775 | 327.82 | 43600 | 5.8471 | 1.0 |
0.0653 | 329.32 | 43800 | 5.4054 | 1.0 |
0.0739 | 330.83 | 44000 | 6.0978 | 1.0 |
0.0634 | 332.33 | 44200 | 6.0081 | 1.0 |
0.075 | 333.83 | 44400 | 6.0761 | 1.0 |
0.0609 | 335.34 | 44600 | 5.8444 | 1.0 |
0.0622 | 336.84 | 44800 | 6.2485 | 1.0 |
0.0757 | 338.35 | 45000 | 6.0131 | 1.0 |
0.0758 | 339.85 | 45200 | 5.9577 | 1.0 |
0.0617 | 341.35 | 45400 | 5.7657 | 1.0 |
0.0694 | 342.86 | 45600 | 5.7509 | 1.0 |
0.0646 | 344.36 | 45800 | 5.5593 | 1.0 |
0.0548 | 345.86 | 46000 | 5.9096 | 1.0 |
0.0604 | 347.37 | 46200 | 6.2313 | 1.0 |
0.0505 | 348.87 | 46400 | 5.4780 | 1.0 |
0.0631 | 350.38 | 46600 | 6.0868 | 1.0 |
0.0622 | 351.88 | 46800 | 5.8833 | 1.0 |
0.0605 | 353.38 | 47000 | 5.5888 | 1.0 |
0.0632 | 354.89 | 47200 | 5.7510 | 1.0 |
0.0658 | 356.39 | 47400 | 5.2321 | 1.0 |
0.0561 | 357.89 | 47600 | 5.6745 | 1.0 |
0.0737 | 359.4 | 47800 | 6.0472 | 1.0 |
0.0561 | 360.9 | 48000 | 6.2185 | 1.0 |
0.0564 | 362.41 | 48200 | 6.0749 | 1.0 |
0.0626 | 363.91 | 48400 | 5.6136 | 1.0 |
0.0725 | 365.41 | 48600 | 5.7983 | 1.0 |
0.0602 | 366.92 | 48800 | 5.5020 | 1.0 |
0.0599 | 368.42 | 49000 | 6.0626 | 1.0 |
0.0728 | 369.92 | 49200 | 6.3407 | 1.0 |
0.0561 | 371.43 | 49400 | 6.2899 | 1.0 |
0.0611 | 372.93 | 49600 | 6.5780 | 1.0 |
0.065 | 374.44 | 49800 | 6.4685 | 1.0 |
0.0561 | 375.94 | 50000 | 5.5252 | 1.0 |
0.0482 | 377.44 | 50200 | 5.3905 | 1.0 |
0.0575 | 378.95 | 50400 | 5.5660 | 1.0 |
0.0673 | 380.45 | 50600 | 6.3424 | 1.0 |
0.0588 | 381.95 | 50800 | 6.5294 | 1.0 |
0.0563 | 383.46 | 51000 | 5.2974 | 1.0 |
0.0702 | 384.96 | 51200 | 5.8705 | 1.0 |
0.0517 | 386.47 | 51400 | 5.7488 | 1.0 |
0.0629 | 387.97 | 51600 | 5.8414 | 1.0 |
0.0569 | 389.47 | 51800 | 5.3303 | 1.0 |
0.0586 | 390.98 | 52000 | 5.1755 | 1.0 |
0.0581 | 392.48 | 52200 | 6.0030 | 1.0 |
0.0673 | 393.98 | 52400 | 5.9972 | 1.0 |
0.0533 | 395.49 | 52600 | 6.1624 | 1.0 |
0.0597 | 396.99 | 52800 | 5.6803 | 1.0 |
0.0494 | 398.5 | 53000 | 5.4154 | 1.0 |
0.0526 | 400.0 | 53200 | 5.5855 | 1.0 |
0.0578 | 401.5 | 53400 | 5.9491 | 1.0 |
0.0546 | 403.01 | 53600 | 5.9381 | 1.0 |
0.0575 | 404.51 | 53800 | 5.9629 | 1.0 |
0.0592 | 406.02 | 54000 | 5.8617 | 1.0 |
0.0444 | 407.52 | 54200 | 5.5513 | 1.0 |
0.0467 | 409.02 | 54400 | 5.2998 | 1.0 |
0.0654 | 410.53 | 54600 | 5.3034 | 1.0 |
0.0546 | 412.03 | 54800 | 5.3077 | 1.0 |
0.0567 | 413.53 | 55000 | 5.0215 | 1.0 |
0.0564 | 415.04 | 55200 | 5.4569 | 1.0 |
0.0494 | 416.54 | 55400 | 5.7311 | 1.0 |
0.0448 | 418.05 | 55600 | 5.6774 | 1.0 |
0.0695 | 419.55 | 55800 | 5.5563 | 1.0 |
0.0451 | 421.05 | 56000 | 6.0087 | 1.0 |
0.0514 | 422.56 | 56200 | 5.4969 | 1.0 |
0.0504 | 424.06 | 56400 | 6.0321 | 1.0 |
0.0429 | 425.56 | 56600 | 5.6021 | 1.0 |
0.0503 | 427.07 | 56800 | 5.8039 | 1.0 |
0.0528 | 428.57 | 57000 | 5.9237 | 1.0 |
0.0508 | 430.08 | 57200 | 5.7653 | 1.0 |
0.0533 | 431.58 | 57400 | 6.2778 | 1.0 |
0.048 | 433.08 | 57600 | 6.0965 | 1.0 |
0.0492 | 434.59 | 57800 | 5.3128 | 1.0 |
0.0438 | 436.09 | 58000 | 5.7699 | 1.0 |
0.0525 | 437.59 | 58200 | 5.1163 | 1.0 |
0.0573 | 439.1 | 58400 | 5.4089 | 1.0 |
0.0587 | 440.6 | 58600 | 5.2019 | 1.0 |
📄 許可證
本模型採用 Apache 2.0 許可證。
Voice Activity Detection
MIT
基於pyannote.audio 2.1版本的語音活動檢測模型,用於識別音頻中的語音活動時間段
語音識別
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
這是一個針對葡萄牙語語音識別任務微調的XLSR-53大模型,基於Common Voice 6.1數據集訓練,支持葡萄牙語語音轉文本。
語音識別 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先進自動語音識別(ASR)和語音翻譯模型,在超過500萬小時的標註數據上訓練,具有強大的跨數據集和跨領域泛化能力。
語音識別 支持多種語言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI開發的最先進的自動語音識別(ASR)和語音翻譯模型,經過超過500萬小時標記數據的訓練,在零樣本設置下展現出強大的泛化能力。
語音識別
Transformers 支持多種語言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的俄語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的中文語音識別模型,支持16kHz採樣率的語音輸入。
語音識別 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的荷蘭語語音識別模型,在Common Voice和CSS10數據集上訓練,支持16kHz音頻輸入。
語音識別 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53模型微調的日語語音識別模型,支持16kHz採樣率的語音輸入
語音識別 日語
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基於Hugging Face預訓練模型的文本與音頻強制對齊工具,支持多種語言,內存效率高
語音識別
Transformers 支持多種語言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基於facebook/wav2vec2-large-xlsr-53微調的阿拉伯語語音識別模型,在Common Voice和阿拉伯語語音語料庫上訓練
語音識別 阿拉伯語
W
jonatasgrosman
2.3M
37
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98