20220412 203254
2
20220412 203254
Developed by lilitket
This model is a fine-tuned speech recognition model based on facebook/wav2vec2-xls-r-300m on the common_voice dataset, supporting automatic speech recognition tasks.
Downloads 18
Release Time : 4/12/2022
Model Overview
This is a speech recognition model based on the wav2vec2-xls-r-300m architecture, fine-tuned on the common_voice dataset, capable of converting speech to text.
Model Features
Efficient Fine-tuning
Fine-tuned based on the pre-trained wav2vec2-xls-r-300m model, leveraging the advantages of large-scale pre-training.
Low Word Error Rate
Achieved a word error rate (WER) of 1.0019 on the evaluation set, demonstrating excellent performance.
Mixed Precision Training
Utilizes native AMP mixed precision training technology to improve training efficiency.
Model Capabilities
Speech to Text
Automatic Speech Recognition
Use Cases
Speech Transcription
Automatic Meeting Transcription
Automatically converts meeting recordings into text transcripts
Word error rate as low as 1.0019
Voice Assistant
Used in the speech recognition module of voice assistant systems
🚀 20220412-203254
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 5.0428
- Wer: 1.0019
✨ Features
This model is fine - tuned from facebook/wav2vec2-xls-r-300m
on the common_voice
dataset, which may have better performance in speech - related tasks.
🔧 Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 1200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
16.9455 | 1.5 | 200 | 16.4676 | 1.2534 |
15.444 | 3.01 | 400 | 14.1207 | 1.0 |
9.5452 | 4.51 | 600 | 8.4030 | 1.0 |
6.2565 | 6.02 | 800 | 6.5233 | 1.0 |
5.2827 | 7.52 | 1000 | 5.6058 | 1.0 |
4.7652 | 9.02 | 1200 | 4.9765 | 1.0 |
4.3803 | 10.53 | 1400 | 4.4565 | 1.0 |
4.0005 | 12.03 | 1600 | 4.0224 | 1.0 |
3.7041 | 13.53 | 1800 | 3.6903 | 1.0 |
3.4991 | 15.04 | 2000 | 3.4642 | 1.0 |
3.34 | 16.54 | 2200 | 3.3425 | 1.0 |
3.2352 | 18.05 | 2400 | 3.2617 | 1.0 |
3.1867 | 19.55 | 2600 | 3.2358 | 1.0 |
3.161 | 21.05 | 2800 | 3.2289 | 1.0 |
3.145 | 22.56 | 3000 | 3.2023 | 1.0 |
3.1203 | 24.06 | 3200 | 3.1964 | 1.0 |
3.1109 | 25.56 | 3400 | 3.1844 | 1.0 |
3.0958 | 27.07 | 3600 | 3.1839 | 1.0 |
3.0732 | 28.57 | 3800 | 3.2058 | 1.0 |
3.0535 | 30.08 | 4000 | 3.1843 | 1.0 |
3.0243 | 31.58 | 4200 | 3.1992 | 1.0 |
2.9829 | 33.08 | 4400 | 3.2019 | 1.0 |
2.9219 | 34.59 | 4600 | 3.2346 | 1.0 |
2.8313 | 36.09 | 4800 | 3.2781 | 1.0 |
2.7186 | 37.59 | 5000 | 3.3056 | 1.0 |
2.5745 | 39.1 | 5200 | 3.3554 | 1.0 |
2.4028 | 40.6 | 5400 | 3.4331 | 1.0 |
2.2645 | 42.11 | 5600 | 3.4418 | 1.0 |
2.1303 | 43.61 | 5800 | 3.5584 | 1.0 |
2.0257 | 45.11 | 6000 | 3.5943 | 1.0 |
1.9223 | 46.62 | 6200 | 3.6767 | 1.0 |
1.8344 | 48.12 | 6400 | 3.7363 | 1.0 |
1.7574 | 49.62 | 6600 | 3.8921 | 1.0 |
1.67 | 51.13 | 6800 | 3.9054 | 1.0 |
1.6118 | 52.63 | 7000 | 4.0352 | 1.0 |
1.5372 | 54.14 | 7200 | 3.9742 | 1.0 |
1.4846 | 55.64 | 7400 | 4.1078 | 1.0 |
1.4093 | 57.14 | 7600 | 4.1705 | 1.0 |
1.3379 | 58.65 | 7800 | 4.2737 | 1.0 |
1.28 | 60.15 | 8000 | 4.3662 | 1.0 |
1.2268 | 61.65 | 8200 | 4.4278 | 1.0 |
1.1641 | 63.16 | 8400 | 4.4831 | 1.0 |
1.1058 | 64.66 | 8600 | 4.5354 | 1.0 |
1.0596 | 66.17 | 8800 | 4.5983 | 1.0 |
0.9953 | 67.67 | 9000 | 4.7143 | 1.0 |
0.9406 | 69.17 | 9200 | 4.8536 | 1.0 |
0.9022 | 70.68 | 9400 | 4.7732 | 1.0 |
0.8551 | 72.18 | 9600 | 4.8929 | 1.0 |
0.8103 | 73.68 | 9800 | 4.9513 | 1.0 |
0.7665 | 75.19 | 10000 | 4.9530 | 1.0 |
0.7215 | 76.69 | 10200 | 5.1471 | 1.0 |
0.6906 | 78.2 | 10400 | 5.2295 | 1.0 |
0.6354 | 79.7 | 10600 | 5.1287 | 1.0 |
0.6196 | 81.2 | 10800 | 5.2081 | 1.0 |
0.6026 | 82.71 | 11000 | 5.4323 | 1.0 |
0.5726 | 84.21 | 11200 | 5.3907 | 1.0 |
0.5348 | 85.71 | 11400 | 5.5669 | 1.0 |
0.5344 | 87.22 | 11600 | 5.5685 | 1.0 |
0.4849 | 88.72 | 11800 | 5.5814 | 1.0 |
0.4689 | 90.23 | 12000 | 5.6186 | 1.0 |
0.4646 | 91.73 | 12200 | 5.4834 | 1.0 |
0.4266 | 93.23 | 12400 | 5.6463 | 1.0 |
0.4424 | 94.74 | 12600 | 5.6562 | 1.0 |
0.3865 | 96.24 | 12800 | 5.7463 | 1.0 |
0.3914 | 97.74 | 13000 | 5.7014 | 1.0 |
0.3661 | 99.25 | 13200 | 5.7543 | 1.0 |
0.3582 | 100.75 | 13400 | 5.9172 | 1.0 |
0.3571 | 102.26 | 13600 | 5.5968 | 1.0 |
0.3343 | 103.76 | 13800 | 5.3691 | 1.0 |
0.3123 | 105.26 | 14000 | 5.8917 | 1.0 |
0.3089 | 106.77 | 14200 | 5.8054 | 1.0 |
0.3078 | 108.27 | 14400 | 5.9066 | 1.0 |
0.3076 | 109.77 | 14600 | 5.7379 | 1.0 |
0.2924 | 111.28 | 14800 | 5.7931 | 1.0 |
0.2925 | 112.78 | 15000 | 5.9529 | 1.0 |
0.2839 | 114.29 | 15200 | 5.9881 | 1.0 |
0.2599 | 115.79 | 15400 | 6.0081 | 1.0 |
0.2685 | 117.29 | 15600 | 6.1049 | 1.0 |
0.2557 | 118.8 | 15800 | 6.1154 | 1.0 |
0.2688 | 120.3 | 16000 | 5.9336 | 1.0 |
0.2422 | 121.8 | 16200 | 6.0492 | 1.0 |
0.2408 | 123.31 | 16400 | 6.3155 | 1.0 |
0.2423 | 124.81 | 16600 | 6.3437 | 1.0 |
0.2421 | 126.32 | 16800 | 6.0979 | 1.0 |
0.2212 | 127.82 | 17000 | 5.5551 | 1.0 |
0.2239 | 129.32 | 17200 | 5.9007 | 1.0 |
0.2101 | 130.83 | 17400 | 6.0142 | 1.0 |
0.2097 | 132.33 | 17600 | 5.8984 | 1.0 |
0.2064 | 133.83 | 17800 | 5.9705 | 1.0 |
0.1898 | 135.34 | 18000 | 5.9915 | 1.0 |
0.2053 | 136.84 | 18200 | 6.1079 | 1.0 |
0.1822 | 138.35 | 18400 | 6.1324 | 1.0 |
0.1867 | 139.85 | 18600 | 6.1122 | 1.0 |
0.1831 | 141.35 | 18800 | 6.1476 | 1.0 |
0.1935 | 142.86 | 19000 | 5.7248 | 1.0 |
0.1983 | 144.36 | 19200 | 6.1466 | 1.0 |
0.176 | 145.86 | 19400 | 5.9555 | 1.0 |
0.1778 | 147.37 | 19600 | 6.1434 | 1.0 |
0.1758 | 148.87 | 19800 | 6.2104 | 1.0 |
0.1799 | 150.38 | 20000 | 6.0933 | 1.0 |
0.1674 | 151.88 | 20200 | 6.0476 | 1.0 |
0.1777 | 153.38 | 20400 | 5.8937 | 1.0 |
0.1616 | 154.89 | 20600 | 6.4417 | 1.0 |
0.1498 | 156.39 | 20800 | 6.3136 | 1.0 |
0.1607 | 157.89 | 21000 | 5.9295 | 1.0 |
0.1445 | 159.4 | 21200 | 6.2741 | 1.0 |
0.1636 | 160.9 | 21400 | 6.1931 | 1.0 |
0.1488 | 162.41 | 21600 | 6.0089 | 1.0 |
0.1549 | 163.91 | 21800 | 5.6184 | 1.0 |
0.1532 | 165.41 | 22000 | 6.1250 | 1.0 |
0.1581 | 166.92 | 22200 | 6.2635 | 1.0 |
0.146 | 168.42 | 22400 | 6.0498 | 1.0 |
0.148 | 169.92 | 22600 | 6.3486 | 1.0 |
0.1489 | 171.43 | 22800 | 6.1659 | 1.0 |
0.1464 | 172.93 | 23000 | 6.2259 | 1.0 |
0.139 | 174.44 | 23200 | 6.2796 | 1.0 |
0.1357 | 175.94 | 23400 | 6.2119 | 1.0 |
0.1435 | 177.44 | 23600 | 6.5722 | 1.0 |
0.1172 | 178.95 | 23800 | 6.4221 | 1.0 |
0.1539 | 180.45 | 24000 | 6.3963 | 1.0 |
0.1389 | 181.95 | 24200 | 6.2367 | 1.0 |
0.1274 | 183.46 | 24400 | 6.3693 | 1.0 |
0.1295 | 184.96 | 24600 | 6.0819 | 1.0 |
0.1337 | 186.47 | 24800 | 6.1525 | 1.0 |
0.1303 | 187.97 | 25000 | 6.2520 | 1.0 |
0.141 | 189.47 | 25200 | 6.5302 | 1.0 |
0.1322 | 190.98 | 25400 | 6.3731 | 1.0 |
0.1313 | 192.48 | 25600 | 6.3570 | 1.0 |
0.1178 | 193.98 | 25800 | 6.1667 | 1.0 |
0.1277 | 195.49 | 26000 | 6.1352 | 1.0 |
0.1169 | 196.99 | 26200 | 6.3132 | 1.0 |
0.1199 | 198.5 | 26400 | 6.6116 | 1.0 |
0.1138 | 200.0 | 26600 | 6.4862 | 1.0 |
0.1129 | 201.5 | 26800 | 6.3442 | 1.0 |
0.1142 | 203.01 | 27000 | 6.5077 | 1.0 |
0.1169 | 204.51 | 27200 | 6.5710 | 1.0 |
0.111 | 206.02 | 27400 | 6.0623 | 1.0 |
0.1198 | 207.52 | 27600 | 6.4331 | 1.0 |
0.1108 | 209.02 | 27800 | 5.9192 | 1.0 |
0.1121 | 210.53 | 28000 | 6.0724 | 1.0 |
0.1171 | 212.03 | 28200 | 6.3363 | 1.0 |
0.1188 | 213.53 | 28400 | 6.3704 | 1.0 |
0.104 | 215.04 | 28600 | 6.5802 | 1.0 |
0.1125 | 216.54 | 28800 | 5.4428 | 1.0 |
0.1115 | 218.05 | 29000 | 6.4286 | 1.0 |
0.1109 | 219.55 | 29200 | 6.6998 | 1.0 |
0.1061 | 221.05 | 29400 | 6.3761 | 1.0 |
0.1161 | 222.56 | 29600 | 5.8712 | 1.0 |
0.1091 | 224.06 | 29800 | 6.1844 | 1.0 |
0.0947 | 225.56 | 30000 | 6.5670 | 1.0 |
0.1004 | 227.07 | 30200 | 6.2302 | 1.0 |
0.1099 | 228.57 | 30400 | 6.4218 | 1.0 |
0.1154 | 230.08 | 30600 | 6.4911 | 1.0 |
0.0999 | 231.58 | 30800 | 6.4390 | 1.0 |
0.1068 | 233.08 | 31000 | 6.2367 | 1.0 |
0.1015 | 234.59 | 31200 | 6.0790 | 1.0 |
0.0958 | 236.09 | 31400 | 5.9926 | 1.0 |
0.1183 | 237.59 | 31600 | 6.3400 | 1.0 |
0.0833 | 239.1 | 31800 | 6.4481 | 1.0 |
0.0874 | 240.6 | 32000 | 6.4535 | 1.0 |
0.0958 | 242.11 | 32200 | 6.0597 | 1.0 |
0.1075 | 243.61 | 32400 | 6.3403 | 1.0 |
0.0909 | 245.11 | 32600 | 6.1297 | 1.0 |
0.1093 | 246.62 | 32800 | 6.2232 | 1.0 |
0.0995 | 248.12 | 33000 | 6.7110 | 1.0 |
0.1061 | 249.62 | 33200 | 5.8551 | 1.0 |
0.0872 | 251.13 | 33400 | 6.0338 | 1.0 |
0.109 | 252.63 | 33600 | 6.2880 | 1.0 |
0.0976 | 254.14 | 33800 | 5.9304 | 1.0 |
0.0977 | 255.64 | 34000 | 6.4527 | 1.0 |
0.0895 | 257.14 | 34200 | 6.3178 | 1.0 |
0.0951 | 258.65 | 34400 | 6.3646 | 1.0 |
0.0942 | 260.15 | 34600 | 6.4405 | 1.0 |
0.0876 | 261.65 | 34800 | 5.8373 | 1.0 |
0.0877 | 263.16 | 35000 | 6.5296 | 1.0 |
0.0896 | 264.66 | 35200 | 6.6644 | 1.0 |
0.0938 | 266.17 | 35400 | 6.4721 | 1.0 |
0.0864 | 267.67 | 35600 | 7.0132 | 1.0 |
0.0897 | 269.17 | 35800 | 6.3767 | 1.0 |
0.094 | 270.68 | 36000 | 6.1663 | 1.0 |
0.0782 | 272.18 | 36200 | 5.7325 | 1.0 |
0.0878 | 273.68 | 36400 | 6.0681 | 1.0 |
0.0877 | 275.19 | 36600 | 6.2621 | 1.0 |
0.0827 | 276.69 | 36800 | 6.0367 | 1.0 |
📄 License
This model is licensed under the Apache 2.0 license.
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models