Turkish Zeroshot Large
トルコ語BERTモデルをファインチューニングしたゼロショット分類モデルで、XNLIトルコ語データセットで訓練されており、トルコ語テキスト分類タスクに適しています。
ダウンロード数 88
リリース時間 : 1/9/2025
モデル概要
このモデルはdbmdz/bert-base-turkish-128k-uncasedをfacebook/xnliトルコ語データセットでファインチューニングしたバージョンで、トルコ語のゼロショット分類タスク専用です。
モデル特徴
トルコ語専用
トルコ語に最適化されたゼロショット分類モデル
ゼロショット能力
特定のタスク訓練なしで新しいカテゴリを分類可能
マルチラベル分類
複数の関連タグとその信頼度を同時に予測可能
モデル能力
トルコ語テキスト理解
ゼロショット分類
マルチラベル予測
使用事例
カスタマーサービス
顧客問い合わせ分類
トルコ語の顧客問い合わせを事前定義カテゴリに自動分類
精度76.22%
コンテンツ管理
コンテンツタグ生成
トルコ語コンテンツに自動的に関連タグを生成
🚀 turkish-zeroshot-large
このモデルは、dbmdz/bert-base-turkish-128k-uncased を facebook/xnli tr データセットでファインチューニングしたものです。評価セットでは以下の結果を達成しています。
- 損失: 0.6957
- 正解率: 0.7622
- F1: 0.7621
- 適合率: 0.7702
- 再現率: 0.7622
🚀 クイックスタート
このセクションでは、モデルの基本的な使い方を説明します。
💻 使用例
基本的な使用法
# Use a pipeline as a high-level helper
pipe = pipeline(
"zero-shot-classification",
model="kaixkhazaki/turkish-zeroshot-large",
tokenizer="kaixkhazaki/turkish-zeroshot-large",
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
)
#Enter your text and possible candidates of classification
sequence = "Bu laptopun pil ömrü ne kadar dayanıyor?"
candidate_labels = ["ürün özellikleri", "soru", "bilgi talebi", "laptop", "teknik destek"]
pipe(
sequence,
candidate_labels,
)
>>
{'sequence': 'Bu laptopun pil ömrü ne kadar dayanıyor?',
'labels': ['ürün özellikleri', 'laptop', 'soru', 'bilgi talebi', 'teknik destek'],
'scores': [0.31062474846839905, 0.2971721291542053, 0.1954265981912613, 0.13260306417942047, 0.06417346745729446]}
🔧 技術詳細
トレーニングのハイパーパラメータ
トレーニング中に使用されたハイパーパラメータは以下の通りです。
- 学習率: 5e-05
- トレーニングバッチサイズ: 64
- 評価バッチサイズ: 32
- シード: 42
- オプティマイザ: betas=(0.9,0.999)、epsilon=1e-08 の adamw_torch を使用。追加のオプティマイザ引数はありません。
- 学習率スケジューラの種類: cosine
- 学習率スケジューラのウォームアップステップ: 500
- エポック数: 5
トレーニング結果
トレーニング損失 | エポック | ステップ | 検証損失 | 正解率 | F1 | 適合率 | 再現率 |
---|---|---|---|---|---|---|---|
1.0339 | 0.0326 | 200 | 1.0342 | 0.4855 | 0.4610 | 0.5453 | 0.4855 |
0.8777 | 0.0652 | 400 | 0.7819 | 0.6631 | 0.6634 | 0.6903 | 0.6631 |
0.8194 | 0.0978 | 600 | 0.7322 | 0.6888 | 0.6891 | 0.6956 | 0.6888 |
0.7745 | 0.1304 | 800 | 0.6895 | 0.7120 | 0.7129 | 0.7217 | 0.7120 |
0.7766 | 0.1630 | 1000 | 0.7042 | 0.7044 | 0.7057 | 0.7180 | 0.7044 |
0.7388 | 0.1956 | 1200 | 0.6933 | 0.7092 | 0.7097 | 0.7310 | 0.7092 |
0.7392 | 0.2282 | 1400 | 0.6812 | 0.7201 | 0.7208 | 0.7384 | 0.7201 |
0.7205 | 0.2608 | 1600 | 0.6892 | 0.7108 | 0.7092 | 0.7326 | 0.7108 |
0.7229 | 0.2934 | 1800 | 0.6762 | 0.7120 | 0.7123 | 0.7265 | 0.7120 |
0.6833 | 0.3259 | 2000 | 0.6374 | 0.7333 | 0.7338 | 0.7404 | 0.7333 |
0.7356 | 0.3585 | 2200 | 0.6803 | 0.7112 | 0.7100 | 0.7294 | 0.7112 |
0.7044 | 0.3911 | 2400 | 0.6894 | 0.7169 | 0.7168 | 0.7430 | 0.7169 |
0.701 | 0.4237 | 2600 | 0.6512 | 0.7209 | 0.7225 | 0.7431 | 0.7209 |
0.7005 | 0.4563 | 2800 | 0.6160 | 0.7442 | 0.7451 | 0.7516 | 0.7442 |
0.7028 | 0.4889 | 3000 | 0.6207 | 0.7349 | 0.7360 | 0.7444 | 0.7349 |
0.7129 | 0.5215 | 3200 | 0.6281 | 0.7341 | 0.7360 | 0.7503 | 0.7341 |
0.6812 | 0.5541 | 3400 | 0.6082 | 0.7438 | 0.7444 | 0.7495 | 0.7438 |
0.6615 | 0.5867 | 3600 | 0.6600 | 0.7293 | 0.7296 | 0.7509 | 0.7293 |
0.6851 | 0.6193 | 3800 | 0.6117 | 0.7466 | 0.7476 | 0.7556 | 0.7466 |
0.69 | 0.6519 | 4000 | 0.6284 | 0.7454 | 0.7461 | 0.7578 | 0.7454 |
0.6591 | 0.6845 | 4200 | 0.6088 | 0.7526 | 0.7536 | 0.7615 | 0.7526 |
0.6858 | 0.7171 | 4400 | 0.6241 | 0.7442 | 0.7459 | 0.7649 | 0.7442 |
0.6562 | 0.7497 | 4600 | 0.5933 | 0.7631 | 0.7638 | 0.7684 | 0.7631 |
0.6584 | 0.7823 | 4800 | 0.6152 | 0.7510 | 0.7523 | 0.7667 | 0.7510 |
0.6288 | 0.8149 | 5000 | 0.5803 | 0.7663 | 0.7670 | 0.7696 | 0.7663 |
0.6456 | 0.8475 | 5200 | 0.6443 | 0.7369 | 0.7376 | 0.7582 | 0.7369 |
0.6751 | 0.8801 | 5400 | 0.5841 | 0.7627 | 0.7639 | 0.7684 | 0.7627 |
0.6296 | 0.9126 | 5600 | 0.5990 | 0.7510 | 0.7528 | 0.7655 | 0.7510 |
0.6536 | 0.9452 | 5800 | 0.6069 | 0.7454 | 0.7471 | 0.7736 | 0.7454 |
0.6541 | 0.9778 | 6000 | 0.5822 | 0.7598 | 0.7612 | 0.7694 | 0.7598 |
0.5352 | 1.0104 | 6200 | 0.6166 | 0.7590 | 0.7589 | 0.7667 | 0.7590 |
0.513 | 1.0430 | 6400 | 0.5883 | 0.7667 | 0.7669 | 0.7719 | 0.7667 |
0.5426 | 1.0756 | 6600 | 0.5802 | 0.7631 | 0.7641 | 0.7709 | 0.7631 |
0.5609 | 1.1082 | 6800 | 0.5901 | 0.7558 | 0.7559 | 0.7602 | 0.7558 |
0.5626 | 1.1408 | 7000 | 0.5967 | 0.7538 | 0.7556 | 0.7727 | 0.7538 |
0.5404 | 1.1734 | 7200 | 0.5973 | 0.7530 | 0.7549 | 0.7668 | 0.7530 |
0.547 | 1.2060 | 7400 | 0.6014 | 0.7538 | 0.7539 | 0.7652 | 0.7538 |
0.5364 | 1.2386 | 7600 | 0.5895 | 0.7647 | 0.7656 | 0.7770 | 0.7647 |
0.5504 | 1.2712 | 7800 | 0.6127 | 0.7494 | 0.7483 | 0.7621 | 0.7494 |
0.5322 | 1.3038 | 8000 | 0.5927 | 0.7639 | 0.7646 | 0.7713 | 0.7639 |
0.5211 | 1.3364 | 8200 | 0.6247 | 0.7494 | 0.7510 | 0.7689 | 0.7494 |
0.561 | 1.3690 | 8400 | 0.5600 | 0.7731 | 0.7739 | 0.7775 | 0.7731 |
0.559 | 1.4016 | 8600 | 0.6107 | 0.7506 | 0.7514 | 0.7647 | 0.7506 |
0.5492 | 1.4342 | 8800 | 0.5770 | 0.7651 | 0.7661 | 0.7721 | 0.7651 |
0.5399 | 1.4668 | 9000 | 0.5827 | 0.7614 | 0.7623 | 0.7697 | 0.7614 |
0.5125 | 1.4993 | 9200 | 0.6080 | 0.7606 | 0.7620 | 0.7732 | 0.7606 |
0.5407 | 1.5319 | 9400 | 0.5651 | 0.7679 | 0.7684 | 0.7707 | 0.7679 |
0.5429 | 1.5645 | 9600 | 0.5778 | 0.7635 | 0.7645 | 0.7695 | 0.7635 |
0.538 | 1.5971 | 9800 | 0.5937 | 0.7526 | 0.7542 | 0.7660 | 0.7526 |
0.5533 | 1.6297 | 10000 | 0.5955 | 0.7715 | 0.7724 | 0.7765 | 0.7715 |
0.5309 | 1.6623 | 10200 | 0.6251 | 0.7538 | 0.7546 | 0.7660 | 0.7538 |
0.5301 | 1.6949 | 10400 | 0.5991 | 0.7627 | 0.7639 | 0.7777 | 0.7627 |
0.5076 | 1.7275 | 10600 | 0.6074 | 0.7578 | 0.7587 | 0.7720 | 0.7578 |
0.5571 | 1.7601 | 10800 | 0.6309 | 0.7534 | 0.7542 | 0.7708 | 0.7534 |
0.5352 | 1.7927 | 11000 | 0.5786 | 0.7739 | 0.7742 | 0.7826 | 0.7739 |
0.5387 | 1.8253 | 11200 | 0.6231 | 0.7526 | 0.7516 | 0.7670 | 0.7526 |
0.5389 | 1.8579 | 11400 | 0.5686 | 0.7671 | 0.7680 | 0.7760 | 0.7671 |
0.5454 | 1.8905 | 11600 | 0.6054 | 0.7546 | 0.7562 | 0.7751 | 0.7546 |
0.5326 | 1.9231 | 11800 | 0.5860 | 0.7715 | 0.7721 | 0.7787 | 0.7715 |
0.5428 | 1.9557 | 12000 | 0.5853 | 0.7655 | 0.7664 | 0.7782 | 0.7655 |
0.5454 | 1.9883 | 12200 | 0.5810 | 0.7651 | 0.7654 | 0.7689 | 0.7651 |
0.3759 | 2.0209 | 12400 | 0.6863 | 0.7679 | 0.7685 | 0.7737 | 0.7679 |
0.3644 | 2.0535 | 12600 | 0.7031 | 0.7586 | 0.7595 | 0.7713 | 0.7586 |
0.3615 | 2.0860 | 12800 | 0.7177 | 0.7582 | 0.7594 | 0.7659 | 0.7582 |
0.383 | 2.1186 | 13000 | 0.6836 | 0.7586 | 0.7594 | 0.7720 | 0.7586 |
0.3818 | 2.1512 | 13200 | 0.6996 | 0.7683 | 0.7693 | 0.7803 | 0.7683 |
0.3917 | 2.1838 | 13400 | 0.6490 | 0.7679 | 0.7693 | 0.7751 | 0.7679 |
0.3527 | 2.2164 | 13600 | 0.7409 | 0.7570 | 0.7580 | 0.7717 | 0.7570 |
0.3785 | 2.2490 | 13800 | 0.6836 | 0.7570 | 0.7571 | 0.7700 | 0.7570 |
0.3732 | 2.2816 | 14000 | 0.6396 | 0.7723 | 0.7732 | 0.7782 | 0.7723 |
0.3616 | 2.3142 | 14200 | 0.6664 | 0.7651 | 0.7663 | 0.7758 | 0.7651 |
0.3705 | 2.3468 | 14400 | 0.6688 | 0.7570 | 0.7582 | 0.7691 | 0.7570 |
0.3668 | 2.3794 | 14600 | 0.7041 | 0.7627 | 0.7631 | 0.7722 | 0.7627 |
0.3697 | 2.4120 | 14800 | 0.6771 | 0.7554 | 0.7558 | 0.7666 | 0.7554 |
0.3767 | 2.4446 | 15000 | 0.6950 | 0.7606 | 0.7613 | 0.7733 | 0.7606 |
0.3999 | 2.4772 | 15200 | 0.6775 | 0.7602 | 0.7608 | 0.7685 | 0.7602 |
0.3758 | 2.5098 | 15400 | 0.6654 | 0.7618 | 0.7622 | 0.7679 | 0.7618 |
0.3851 | 2.5424 | 15600 | 0.7070 | 0.7558 | 0.7568 | 0.7687 | 0.7558 |
0.3716 | 2.5750 | 15800 | 0.7472 | 0.7546 | 0.7555 | 0.7704 | 0.7546 |
0.3633 | 2.6076 | 16000 | 0.6957 | 0.7622 | 0.7621 | 0.7702 | 0.7622 |
フレームワークのバージョン
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
📄 ライセンス
このモデルは MIT ライセンスの下で提供されています。
Distilbert Base Uncased Finetuned Sst 2 English
Apache-2.0
DistilBERT - base - uncasedをベースに、SST - 2感情分析データセットで微調整されたテキスト分類モデル。正解率91.3%
テキスト分類 英語
D
distilbert
5.2M
746
Xlm Roberta Base Language Detection
MIT
XLM-RoBERTaベースの多言語検出モデル、20言語のテキスト分類をサポート
テキスト分類
Transformers 複数言語対応

X
papluca
2.7M
333
Roberta Hate Speech Dynabench R4 Target
このモデルは動的データセット生成を通じてオンライン憎悪検出を改善し、検出効果を高めるために最悪ケースから学習することに焦点を当てています。
テキスト分類
Transformers 英語

R
facebook
2.0M
80
Bert Base Multilingual Uncased Sentiment
MIT
bert-base-multilingual-uncasedを微調整した多言語感情分析モデルで、6言語の商品レビューの感情分析に対応しています。
テキスト分類 複数言語対応
B
nlptown
1.8M
371
Emotion English Distilroberta Base
DistilRoBERTa-baseをファインチューニングした英語テキストの感情分類モデルで、エクマンの6基本感情と中立カテゴリを予測可能。
テキスト分類
Transformers 英語

E
j-hartmann
1.1M
402
Robertuito Sentiment Analysis
RoBERTuitoベースのスペイン語ツイート感情分析モデル、POS(ポジティブ)/NEG(ネガティブ)/NEU(ニュートラル)の3分類に対応
テキスト分類 スペイン語
R
pysentimiento
1.0M
88
Finbert Tone
FinBERTは金融通信テキストを元に事前学習されたBERTモデルで、金融自然言語処理分野に特化しています。finbert-toneはその微調整バージョンで、金融感情分析タスクに使用されます。
テキスト分類
Transformers 英語

F
yiyanghkust
998.46k
178
Roberta Base Go Emotions
MIT
RoBERTa-baseに基づく多ラベル感情分類モデルで、go_emotionsデータセットで訓練され、28種類の感情ラベル識別をサポートします。
テキスト分類
Transformers 英語

R
SamLowe
848.12k
565
Xlm Emo T
XLM-EMOはXLM-Tモデルをファインチューニングした多言語感情分析モデルで、19言語をサポートし、特にソーシャルメディアテキストの感情予測に特化しています。
テキスト分類
Transformers その他

X
MilaNLProc
692.30k
7
Deberta V3 Base Mnli Fever Anli
MIT
MultiNLI、Fever-NLI、ANLIのデータセットを用いて訓練されたDeBERTa-v3モデルで、ゼロショット分類と自然言語推論タスクに優れています。
テキスト分類
Transformers 英語

D
MoritzLaurer
613.93k
204
おすすめAIモデル
Llama 3 Typhoon V1.5x 8b Instruct
タイ語専用に設計された80億パラメータの命令モデルで、GPT-3.5-turboに匹敵する性能を持ち、アプリケーションシナリオ、検索拡張生成、制限付き生成、推論タスクを最適化
大規模言語モデル
Transformers 複数言語対応

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-TinyはSODAデータセットでトレーニングされた超小型対話モデルで、エッジデバイス推論向けに設計されており、体積はCosmo-3Bモデルの約2%です。
対話システム
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
RoBERTaアーキテクチャに基づく中国語抽出型QAモデルで、与えられたテキストから回答を抽出するタスクに適しています。
質問応答システム 中国語
R
uer
2,694
98