Stella En 400M V5 Cpu
S
Stella En 400M V5 Cpu
Developed by biggunnyso4
stella_en_400M_v5_cpu is a model that performs excellently in multiple natural language processing tasks, especially in tasks such as classification, retrieval, clustering, and semantic text similarity.
Downloads 612
Release Time : 9/6/2024
Model Overview
This model is a multi-functional natural language processing model that supports various task types, including text classification, information retrieval, text clustering, and semantic similarity calculation.
Model Features
Multi-task support
Supports multiple natural language processing tasks, including classification, retrieval, clustering, and semantic similarity calculation.
High performance
Performs excellently in multiple benchmark tests, especially with an accuracy rate of up to 97% in classification tasks.
Efficient inference
Optimizes CPU inference performance and is suitable for environments with limited resources.
Model Capabilities
Text classification
Information retrieval
Text clustering
Semantic similarity calculation
Re-ranking
Use Cases
E-commerce
Product review classification
Classify the sentiment polarity of Amazon product reviews
Accuracy: 97.19%
Counterfactual review identification
Identify counterfactual reviews on the Amazon platform
Accuracy: 92.36%
Finance
Bank customer service question classification
Automatically classify bank customer service questions
Accuracy: 89.30%
Academic research
Paper clustering
Perform topic clustering on arXiv and BioRxiv papers
V-measure: 55.16% (arXiv), 50.68% (BioRxiv)
## 🚀 stella_en_400M_v5_cpu
This document presents the performance results of the `stella_en_400M_v5_cpu` model on multiple datasets across different NLP tasks such as classification, retrieval, clustering, and reranking.
## 📚 Documentation
### Model Performance Results
| Dataset Name | Task Type | Metrics | Value |
| --- | --- | --- | --- |
| MTEB AmazonCounterfactualClassification (en) | Classification | accuracy | 92.35820895522387 |
| | | ap | 70.81322736988783 |
| | | ap_weighted | 70.81322736988783 |
| | | f1 | 88.9505466159595 |
| | | f1_weighted | 92.68630932872613 |
| | | main_score | 92.35820895522387 |
| MTEB AmazonPolarityClassification | Classification | accuracy | 97.1945 |
| | | ap | 96.08192192244094 |
| | | ap_weighted | 96.08192192244094 |
| | | f1 | 97.1936887167346 |
| | | f1_weighted | 97.1936887167346 |
| | | main_score | 97.1945 |
| MTEB AmazonReviewsClassification (en) | Classification | accuracy | 59.528000000000006 |
| | | f1 | 59.21016819840188 |
| | | f1_weighted | 59.21016819840188 |
| | | main_score | 59.528000000000006 |
| MTEB ArguAna | Retrieval | main_score | 64.24 |
| | | map_at_1 | 40.398 |
| | | map_at_10 | 56.215 |
| | | map_at_100 | 56.833999999999996 |
| | | map_at_1000 | 56.835 |
| | | map_at_20 | 56.747 |
| | | map_at_3 | 52.181 |
| | | map_at_5 | 54.628 |
| | | mrr_at_1 | 41.25177809388336 |
| | | mrr_at_10 | 56.570762491815216 |
| | | mrr_at_100 | 57.17548614361504 |
| | | mrr_at_1000 | 57.176650626377466 |
| | | mrr_at_20 | 57.08916253512566 |
| | | mrr_at_3 | 52.47747747747754 |
| | | mrr_at_5 | 54.94547178757718 |
| | | nauc_map_at_1000_diff1 | 22.408086887100158 |
| | | nauc_map_at_1000_max | -8.730419096847543 |
| | | nauc_map_at_1000_std | -17.789262741255737 |
| | | nauc_map_at_100_diff1 | 22.407371684274025 |
| | | nauc_map_at_100_max | -8.732263549026266 |
| | | nauc_map_at_100_std | -17.79550515579994 |
| | | nauc_map_at_10_diff1 | 21.925005073301246 |
| | | nauc_map_at_10_max | -8.990323944492134 |
| | | nauc_map_at_10_std | -18.199246301671458 |
| | | nauc_map_at_1_diff1 | 26.23276644969203 |
| | | nauc_map_at_1_max | -12.376511389571245 |
| | | nauc_map_at_1_std | -18.11411715207284 |
| | | nauc_map_at_20_diff1 | 22.32455790850922 |
| | | nauc_map_at_20_max | -8.664671547236034 |
| | | nauc_map_at_20_std | -17.8290016125137 |
| | | nauc_map_at_3_diff1 | 22.395462147465064 |
| | | nauc_map_at_3_max | -8.206580750918844 |
| | | nauc_map_at_3_std | -17.604490446911484 |
| | | nauc_map_at_5_diff1 | 21.95307379904799 |
| | | nauc_map_at_5_max | -8.03958102978443 |
| | | nauc_map_at_5_std | -17.36578866595004 |
| | | nauc_mrr_at_1000_diff1 | 20.124236798365587 |
| | | nauc_mrr_at_1000_max | -9.587376069575898 |
| | | nauc_mrr_at_1000_std | -17.79191612151833 |
| | | nauc_mrr_at_100_diff1 | 20.123612603474033 |
| | | nauc_mrr_at_100_max | -9.589187218607831 |
| | | nauc_mrr_at_100_std | -17.7981617777748 |
| | | nauc_mrr_at_10_diff1 | 19.723683875738075 |
| | | nauc_mrr_at_10_max | -9.774151729178815 |
| | | nauc_mrr_at_10_std | -18.168668675495162 |
| | | nauc_mrr_at_1_diff1 | 23.945332059908132 |
| | | nauc_mrr_at_1_max | -12.260461466152819 |
| | | nauc_mrr_at_1_std | -18.007194922921148 |
| | | nauc_mrr_at_20_diff1 | 20.04819461810257 |
| | | nauc_mrr_at_20_max | -9.518368283588936 |
| | | nauc_mrr_at_20_std | -17.831608149836136 |
| | | nauc_mrr_at_3_diff1 | 19.8571785245832 |
| | | nauc_mrr_at_3_max | -9.464375021240478 |
| | | nauc_mrr_at_3_std | -17.728533927330453 |
| | | nauc_mrr_at_5_diff1 | 19.670313652167827 |
| | | nauc_mrr_at_5_max | -8.966372585728434 |
| | | nauc_mrr_at_5_std | -17.468955834324817 |
| | | nauc_ndcg_at_1000_diff1 | 21.863049281767417 |
| | | nauc_ndcg_at_1000_max | -8.18698520924057 |
| | | nauc_ndcg_at_1000_std | -17.634483364794804 |
| | | nauc_ndcg_at_100_diff1 | 21.849924385738586 |
| | | nauc_ndcg_at_100_max | -8.226437560889345 |
| | | nauc_ndcg_at_100_std | -17.774648478087002 |
| | | nauc_ndcg_at_10_diff1 | 19.888395590413573 |
| | | nauc_ndcg_at_10_max | -8.968706085632382 |
| | | nauc_ndcg_at_10_std | -19.31386964628115 |
| | | nauc_ndcg_at_1_diff1 | 26.23276644969203 |
| | | nauc_ndcg_at_1_max | -12.376511389571245 |
| | | nauc_ndcg_at_1_std | -18.11411715207284 |
| | | nauc_ndcg_at_20_diff1 | 21.38413342416933 |
| | | nauc_ndcg_at_20_max | -7.636238194084164 |
| | | nauc_ndcg_at_20_std | -17.946390844693028 |
| | | nauc_ndcg_at_3_diff1 | 21.29169165029195 |
| | | nauc_ndcg_at_3_max | -6.793840499730093 |
| | | nauc_ndcg_at_3_std | -17.52359001586737 |
| | | nauc_ndcg_at_5_diff1 | 20.238297656671364 |
| | | nauc_ndcg_at_5_max | -6.424992706950072 |
| | | nauc_ndcg_at_5_std | -17.082391132291356 |
| | | nauc_precision_at_1000_diff1 | -7.05195108528572 |
| | | nauc_precision_at_1000_max | 34.439879624882145 |
| | | nauc_precision_at_1000_std | 68.72436351659353 |
| | | nauc_precision_at_100_diff1 | -2.769464113932605 |
| | | nauc_precision_at_100_max | 9.89562961226698 |
| | | nauc_precision_at_100_std | -0.5880967482224028 |
| | | nauc_precision_at_10_diff1 | 2.1371544726832323 |
| | | nauc_precision_at_10_max | -11.93051325147756 |
| | | nauc_precision_at_10_std | -30.83144187392059 |
| | | nauc_precision_at_1_diff1 | 26.23276644969203 |
| | | nauc_precision_at_1_max | -12.376511389571245 |
| | | nauc_precision_at_1_std | -18.11411715207284 |
| | | nauc_precision_at_20_diff1 | 3.780146814257504 |
| | | nauc_precision_at_20_max | 17.06527540214615 |
| | | nauc_precision_at_20_std | -20.36832563035565 |
| | | nauc_precision_at_3_diff1 | 17.63894384012077 |
| | | nauc_precision_at_3_max | -2.0220490624638887 |
| | | nauc_precision_at_3_std | -17.285601413493918 |
| | | nauc_precision_at_5_diff1 | 12.557855071944601 |
| | | nauc_precision_at_5_max | 0.5840236463956658 |
| | | nauc_precision_at_5_std | -15.827224420217846 |
| | | nauc_recall_at_1000_diff1 | -7.051951085286463 |
| | | nauc_recall_at_1000_max | 34.43987962487738 |
| | | nauc_recall_at_1000_std | 68.724363516591 |
| | | nauc_recall_at_100_diff1 | -2.769464113930314 |
| | | nauc_recall_at_100_max | 9.895629612270017 |
| | | nauc_recall_at_100_std | -0.58809674821745 |
| | | nauc_recall_at_10_diff1 | 2.1371544726834495 |
| | | nauc_recall_at_10_max | -11.930513251477253 |
| | | nauc_recall_at_10_std | -30.83144187392047 |
| | | nauc_recall_at_1_diff1 | 26.23276644969203 |
| | | nauc_recall_at_1_max | -12.376511389571245 |
| | | nauc_recall_at_1_std | -18.11411715207284 |
| | | nauc_recall_at_20_diff1 | 3.7801468142575922 |
| | | nauc_recall_at_20_max | 17.0652754021456 |
| | | nauc_recall_at_20_std | -20.36832563035559 |
| | | nauc_recall_at_3_diff1 | 17.63894384012074 |
| | | nauc_recall_at_3_max | -2.02204906246383 |
| | | nauc_recall_at_3_std | -17.28560141349386 |
| | | nauc_recall_at_5_diff1 | 12.55785507194463 |
| | | nauc_recall_at_5_max | 0.5840236463957296 |
| | | nauc_recall_at_5_std | -15.827224420217856 |
| | | ndcg_at_1 | 40.398 |
| | | ndcg_at_10 | 64.24 |
| | | ndcg_at_100 | 66.631 |
| | | ndcg_at_1000 | 66.65100000000001 |
| | | ndcg_at_20 | 66.086 |
| | | ndcg_at_3 | 55.938 |
| | | ndcg_at_5 | 60.370000000000005 |
| | | precision_at_1 | 40.398 |
| | | precision_at_10 | 8.962 |
| | | precision_at_100 | 0.9950000000000001 |
| | | precision_at_1000 | 0.1 |
| | | precision_at_20 | 4.836 |
| | | precision_at_3 | 22.262 |
| | | precision_at_5 | 15.519 |
| | | recall_at_1 | 40.398 |
| | | recall_at_10 | 89.616 |
| | | recall_at_100 | 99.502 |
| | | recall_at_1000 | 99.644 |
| | | recall_at_20 | 96.72800000000001 |
| | | recall_at_3 | 66.78500000000001 |
| | | recall_at_5 | 77.596 |
| MTEB ArxivClusteringP2P | Clustering | main_score | 55.1564333205451 |
| | | v_measure | 55.1564333205451 |
| | | v_measure_std | 14.696883012214512 |
| MTEB ArxivClusteringS2S | Clustering | main_score | 49.823698316694795 |
| | | v_measure | 49.823698316694795 |
| | | v_measure_std | 14.951660654298186 |
| MTEB AskUbuntuDupQuestions | Reranking | main_score | 66.15294503553424 |
| | | map | 66.15294503553424 |
| | | mrr | 78.53438420612935 |
| | | nAUC_map_diff1 | 12.569697092717997 |
| | | nAUC_map_max | 21.50670312412572 |
| | | nAUC_map_std | 16.943786429229064 |
| | | nAUC_mrr_diff1 | 15.590272897361238 |
| | | nAUC_mrr_max | 34.96072022474653 |
| | | nAUC_mrr_std | 21.649217605241045 |
| MTEB BIOSSES | STS | cosine_pearson | 85.7824546319275 |
| | | cosine_spearman | 83.29587385660628 |
| | | euclidean_pearson | 84.58764190565167 |
| | | euclidean_spearman | 83.30069324352772 |
| | | main_score | 83.29587385660628 |
| | | manhattan_pearson | 84.95996839947179 |
| | | manhattan_spearman | 83.87480271054358 |
| | | pearson | 85.7824546319275 |
| | | spearman | 83.29587385660628 |
| MTEB Banking77Classification | Classification | accuracy | 89.30194805194806 |
| | | f1 | 89.26182507266391 |
| | | f1_weighted | 89.26182507266391 |
| | | main_score | 89.30194805194806 |
| MTEB BiorxivClusteringP2P | Clustering | main_score | 50.67972171889736 |
| | | v_measure | 50.67972171889736 |
| | | v_measure_std | 0.7687409980036303 |
| MTEB BiorxivClusteringS2S | Clustering | main_score | 45.80539715556144 |
| | | v_measure | 45.80539715556144 |
| | | v_measure_std | 0.9601346216579142 |
| MTEB CQADupstackRetrieval | Retrieval | main_score | 44.361250000000005 |
| | | map_at_1 | 28.304499999999997 |
| | | map_at_10 | 38.54841666666666 |
| | | map_at_100 | 39.83141666666667 |
| | | map_at_1000 | 39.944750000000006 |
| | | map_at_20 | 39.25341666666667 |
| | | map_at_3 | 35.406749999999995 |
| | | map_at_5 | 37.15558333333333 |
| | | mrr_at_1 | 34.09077232860122 |
| | | mrr_at_10 | 43.15445393211421 |
| | | mrr_at_100 | 43.98645286848257 |
| | | mrr_at_1000 | 44.037631313469404 |
| | | mrr_at_20 | 43.64045813249614 |
| | | mrr_at_3 | 40.674138648480486 |
| | | mrr_at_5 | 42.106251182620255 |
| | | nauc_map_at_1000_diff1 | 46.250011739434996 |
| | | nauc_map_at_1000_max | 30.13664446260598 |
| | | nauc_map_at_1000_std | 5.422301791618935 |
| | | nauc_map_at_100_diff1 | 46.253631351999395 |
| | | nauc_map_at_100_max | 30.12612918885181 |
| | | nauc_map_at_100_std | 5.367077019987172 |
| | | nauc_map_at_10_diff1 | 46.328171341741346 |
| | | nauc_map_at_10_max | 29.80274612581464 |
| | | nauc_map_at_10_std | 4.62996685176396 |
| | | nauc_map_at_1_diff1 | 51.56118117729493 |
| | | nauc_map_at_1_max | 27.94885243863768 |
| | | nauc_map_at_1_std | 1.700366508927356 |
| | | nauc_map_at_20_diff1 | 46.286750260299094 |
| | | nauc_map_at_20_max | 29.979205290353278 |
| | | nauc_map_at_20_std | 5.010588412441873 |
| | | nauc_map_at_3_diff1 | 47.10018183619064 |
| | | nauc_map_at_3_max | 29.062318206078753 |
| | | nauc_map_at_3_std | 3.2235696254694197 |
| | | nauc_map_at_5_diff1 | 46.41971733050039 |
| | | nauc_map_at_5_max | 29.456798617695657 |
| | | nauc_map_at_5_std | 4.0921691023077145 |
| | | nauc_mrr_at_1000_diff1 | 45.88888977975723 |
| | | nauc_mrr_at_1000_max | 32.162138978089544 |
| | | nauc_mrr_at_1000_std | 6.2811943424217915 |
| | | nauc_mrr_at_100_diff1 | 45.87480433011124 |
| | | nauc_mrr_at_100_max | 32.16011334212834 |
| | | nauc_mrr_at_100_std | 6.2865717772421785 |
| | | nauc_mrr_at_10_diff1 | 45.849652904658825 |
| | | nauc_mrr_at_10_max | 32.13847916232293 |
| | | nauc_mrr_at_10_std | 6.105718728141999 |
| | | nauc_mrr_at_1_diff1 | 51.013730325062156 |
| | | nauc_mrr_at_1_max | 32.77457396492779 |
| | | nauc_mrr_at_1_std | 4.415684893471724 |
| | | nauc_mrr_at_20_diff1 | 45.86663046255274 |
| | | nauc_mrr_at_20_max | 32.15219360697865 |
| | | nauc_mrr_at_20_std | 6.19603046412763 |
| | | nauc_mrr_at_3_diff1 | 46.522376582423185 |
| | | nauc_mrr_at_3_max | 32.18259009733714 |
| | | nauc_mrr_at_3_std | 5.288000648220897 |
| | | nauc_mrr_at_5_diff1 | 45.86611481369745 |
| | | nauc_mrr_at_5_max | 32.14261639054921 |
| | | nauc_mrr_at_5_std | 5.8811238177073735 |
| | | nauc_ndcg_at_1000_diff1 | 44.5055097547565 |
| | | nauc_ndcg_at_1000_max | 31.149682057975458 |
| | | nauc_ndcg_at_1000_std | 8.157937194901333 |
| | | nauc_ndcg_at_100_diff1 | 44.12398363638596 |
| | | nauc_ndcg_at_100_max | 30.878064321409994 |
| | | nauc_ndcg_at_100_std | 8.40493441452808 |
| | | nauc_ndcg_at_10_diff1 | 44.200093505221474 |
| | | nauc_ndcg_at_10_max | 30.15267107733158 |
| | | nauc_ndcg_at_10_std | 6.407495361566107 |
| | | nauc_ndcg_at_1_diff1 | 51.013730325062156 |
| | | nauc_ndcg_at_1_max | 32.77457396492779 |
| | | nauc_ndcg_at_1_std | 4.415684893471724 |
| | | nauc_ndcg_at_20_diff1 | 44.16988321564116 |
| | | nauc_ndcg_at_20_max | 30.333532500651213 |
| | | nauc_ndcg_at_20_std | 7.10024701386895 |
| | | nauc_ndcg_at_3_diff1 | 45.35982873879988 |
| | | nauc_ndcg_at_3_max | 30.288312457948702 |
| | | nauc_ndcg_at_3_std | 4.653900898293395 |
| | | nauc_ndcg_at_5_diff1 | 44.324558115380185 |
| | | nauc_ndcg_at_5_max | 30.048149698941373 |
| | | nauc_ndcg_at_5_std | 5.6684459618413205 |
| | | nauc_precision_at_1000_diff1 | -7.282175798304458 |
| | | nauc_precision_at_1000_max | 7.820142031765352 |
| | | nauc_precision_at_1000_std | 11.736131836431172 |
| | | nauc_precision_at_100_diff1 | 1.0222940256506976 |
| | | nauc_precision_at_100_max | 16.12346497070298 |
| | | nauc_precision_at_100_std | 18.202607395247874 |
| | | nauc_precision_at_10_diff1 | 18.289439185857837 |
| | | nauc_precision_at_10_max | 26.116517399154375 |
| | | nauc_precision_at_10_std | 13.921214069982302 |
| | | nauc_precision_at_1_diff1 | 51.013730325062156 |
| | | nauc_precision_at_1_max | 32.77457396492779 |
| | | nauc_precision_at_1_std | 4.415684893471724 |
| | | nauc_precision_at_20_diff1 | 12.365165405210886 |
| | | nauc_precision_at_20_max | 22.946297258937367 |
| | | nauc_precision_at_20_std | 16.13862870358933 |
| | | nauc_precision_at_3_diff1 | 32.063423642849685 |
| | | nauc_precision_at_3_max | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models