Chuxin Embedding Q4 K M GGUF
This is a GGUF format model converted from Chuxin-Embedding, primarily used for Chinese text retrieval tasks.
Downloads 14
Release Time : 10/29/2024
Model Overview
This model is a GGUF format version converted from Chuxin-Embedding, suitable for Chinese text retrieval tasks and supports various retrieval scenarios.
Model Features
Efficient Retrieval
Performs excellently in various Chinese retrieval tasks, such as medical and e-commerce fields.
GGUF Format
Converted to GGUF format for easy use with the llama.cpp tool.
Multi-Domain Applicability
Performs well in retrieval tasks across multiple domains, including medical, e-commerce, and video.
Model Capabilities
Chinese Text Retrieval
Semantic Similarity Calculation
Multi-Domain Retrieval
Use Cases
Medical Field
Medical Q&A Retrieval
Used for retrieving and matching medical-related questions.
Achieved a map@10 of 48.715 on the CmedqaRetrieval dataset.
E-commerce Field
Product Retrieval
Used for retrieving product information on e-commerce platforms.
Achieved an ndcg@10 of 74.011 on the EcomRetrieval dataset.
Video Field
Video Content Retrieval
Used for retrieving video-related content.
Achieved a map@10 of 79.62 on the VideoRetrieval dataset.
🚀 Chuxin-Embedding
Chuxin-Embedding is a model based on chuxin-llm/Chuxin-Embedding
, which has shown performance in retrieval tasks on multiple datasets.
📚 Documentation
Model Information
Property | Details |
---|---|
Model Type | Chuxin-Embedding |
Base Model | chuxin-llm/Chuxin-Embedding |
Tags | mteb, llama-cpp, gguf-my-repo |
Performance Metrics
1. MTEB CmedqaRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 33.391999999999996 | | map_at_10 | 48.715 | | map_at_100 | 50.381 | | map_at_1000 | 50.456 | | map_at_3 | 43.708999999999996 | | map_at_5 | 46.405 | | mrr_at_1 | 48.612 | | mrr_at_10 | 58.67099999999999 | | mrr_at_100 | 59.38 | | mrr_at_1000 | 59.396 | | mrr_at_3 | 55.906 | | mrr_at_5 | 57.421 | | ndcg_at_1 | 48.612 | | ndcg_at_10 | 56.581 | | ndcg_at_100 | 62.422999999999995 | | ndcg_at_1000 | 63.476 | | ndcg_at_3 | 50.271 | | ndcg_at_5 | 52.79899999999999 | | precision_at_1 | 48.612 | | precision_at_10 | 11.995000000000001 | | precision_at_100 | 1.696 | | precision_at_1000 | 0.185 | | precision_at_3 | 27.465 | | precision_at_5 | 19.675 | | recall_at_1 | 33.391999999999996 | | recall_at_10 | 69.87100000000001 | | recall_at_100 | 93.078 | | recall_at_1000 | 99.55199999999999 | | recall_at_3 | 50.939 | | recall_at_5 | 58.714 | | main_score | 56.581 |
2. MTEB CovidRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 71.918 | | map_at_10 | 80.609 | | map_at_100 | 80.796 | | map_at_1000 | 80.798 | | map_at_3 | 79.224 | | map_at_5 | 79.96 | | mrr_at_1 | 72.076 | | mrr_at_10 | 80.61399999999999 | | mrr_at_100 | 80.801 | | mrr_at_1000 | 80.803 | | mrr_at_3 | 79.276 | | mrr_at_5 | 80.025 | | ndcg_at_1 | 72.076 | | ndcg_at_10 | 84.286 | | ndcg_at_100 | 85.14500000000001 | | ndcg_at_1000 | 85.21 | | ndcg_at_3 | 81.45400000000001 | | ndcg_at_5 | 82.781 | | precision_at_1 | 72.076 | | precision_at_10 | 9.663 | | precision_at_100 | 1.005 | | precision_at_1000 | 0.101 | | precision_at_3 | 29.398999999999997 | | precision_at_5 | 18.335 | | recall_at_1 | 71.918 | | recall_at_10 | 95.574 | | recall_at_100 | 99.473 | | recall_at_1000 | 100.0 | | recall_at_3 | 87.82900000000001 | | recall_at_5 | 90.991 | | main_score | 84.286 |
3. MTEB DuRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 25.019999999999996 | | map_at_10 | 77.744 | | map_at_100 | 80.562 | | map_at_1000 | 80.60300000000001 | | map_at_3 | 52.642999999999994 | | map_at_5 | 67.179 | | mrr_at_1 | 86.5 | | mrr_at_10 | 91.024 | | mrr_at_100 | 91.09 | | mrr_at_1000 | 91.093 | | mrr_at_3 | 90.558 | | mrr_at_5 | 90.913 | | ndcg_at_1 | 86.5 | | ndcg_at_10 | 85.651 | | ndcg_at_100 | 88.504 | | ndcg_at_1000 | 88.887 | | ndcg_at_3 | 82.707 | | ndcg_at_5 | 82.596 | | precision_at_1 | 86.5 | | precision_at_10 | 41.595 | | precision_at_100 | 4.7940000000000005 | | precision_at_1000 | 0.48900000000000005 | | precision_at_3 | 74.233 | | precision_at_5 | 63.68000000000001 | | recall_at_1 | 25.019999999999996 | | recall_at_10 | 88.114 | | recall_at_100 | 97.442 | | recall_at_1000 | 99.39099999999999 | | recall_at_3 | 55.397 | | recall_at_5 | 73.095 | | main_score | 85.651 |
4. MTEB EcomRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 55.60000000000001 | | map_at_10 | 67.891 | | map_at_100 | 68.28699999999999 | | map_at_1000 | 68.28699999999999 | | map_at_3 | 64.86699999999999 | | map_at_5 | 66.652 | | mrr_at_1 | 55.60000000000001 | | mrr_at_10 | 67.891 | | mrr_at_100 | 68.28699999999999 | | mrr_at_1000 | 68.28699999999999 | | mrr_at_3 | 64.86699999999999 | | mrr_at_5 | 66.652 | | ndcg_at_1 | 55.60000000000001 | | ndcg_at_10 | 74.01100000000001 | | ndcg_at_100 | 75.602 | | ndcg_at_1000 | 75.602 | | ndcg_at_3 | 67.833 | | ndcg_at_5 | 71.005 | | precision_at_1 | 55.60000000000001 | | precision_at_10 | 9.33 | | precision_at_100 | 1.0 | | precision_at_1000 | 0.1 | | precision_at_3 | 25.467000000000002 | | precision_at_5 | 16.8 | | recall_at_1 | 55.60000000000001 | | recall_at_10 | 93.30000000000001 | | recall_at_100 | 100.0 | | recall_at_1000 | 100.0 | | recall_at_3 | 76.4 | | recall_at_5 | 84.0 | | main_score | 74.01100000000001 |
5. MTEB MMarcoRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 66.24799999999999 | | map_at_10 | 75.356 | | map_at_100 | 75.653 | | map_at_1000 | 75.664 | | map_at_3 | 73.515 | | map_at_5 | 74.67099999999999 | | mrr_at_1 | 68.496 | | mrr_at_10 | 75.91499999999999 | | mrr_at_100 | 76.17399999999999 | | mrr_at_1000 | 76.184 | | mrr_at_3 | 74.315 | | mrr_at_5 | 75.313 | | ndcg_at_1 | 68.496 | | ndcg_at_10 | 79.065 | | ndcg_at_100 | 80.417 | | ndcg_at_1000 | 80.72399999999999 | | ndcg_at_3 | 75.551 | | ndcg_at_5 | 77.505 | | precision_at_1 | 68.496 | | precision_at_10 | 9.563 | | precision_at_100 | 1.024 | | precision_at_1000 | 0.105 | | precision_at_3 | 28.391 | | precision_at_5 | 18.086 | | recall_at_1 | 66.24799999999999 | | recall_at_10 | 89.97 | | recall_at_100 | 96.13199999999999 | | recall_at_1000 | 98.551 | | recall_at_3 | 80.624 | | recall_at_5 | 85.271 | | main_score | 79.065 |
6. MTEB MedicalRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 61.8 | | map_at_10 | 71.101 | | map_at_100 | 71.576 | | map_at_1000 | 71.583 | | map_at_3 | 68.867 | | map_at_5 | 70.272 | | mrr_at_1 | 61.9 | | mrr_at_10 | 71.158 | | mrr_at_100 | 71.625 | | mrr_at_1000 | 71.631 | | mrr_at_3 | 68.917 | | mrr_at_5 | 70.317 | | ndcg_at_1 | 61.8 | | ndcg_at_10 | 75.624 | | ndcg_at_100 | 77.702 | | ndcg_at_1000 | 77.836 | | ndcg_at_3 | 71.114 | | ndcg_at_5 | 73.636 | | precision_at_1 | 61.8 | | precision_at_10 | 8.98 | | precision_at_100 | 0.9900000000000001 | | precision_at_1000 | 0.1 | | precision_at_3 | 25.867 | | precision_at_5 | 16.74 | | recall_at_1 | 61.8 | | recall_at_10 | 89.8 | | recall_at_100 | 99.0 | | recall_at_1000 | 100.0 | | recall_at_3 | 77.60000000000001 | | recall_at_5 | 83.7 | | main_score | 75.624 |
7. MTEB T2Retrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 27.173000000000002 | | map_at_10 | 76.454 | | map_at_100 | 80.021 | | map_at_1000 | 80.092 | | map_at_3 | 53.876999999999995 | | map_at_5 | 66.122 | | mrr_at_1 | 89.519 | | mrr_at_10 | 92.091 | | mrr_at_100 | 92.179 | | mrr_at_1000 | 92.183 | | mrr_at_3 | 91.655 | | mrr_at_5 | 91.94 | | ndcg_at_1 | 89.519 | | ndcg_at_10 | 84.043 | | ndcg_at_100 | 87.60900000000001 | | ndcg_at_1000 | 88.32799999999999 | | ndcg_at_3 | 85.623 | | ndcg_at_5 | 84.111 | | precision_at_1 | 89.519 | | precision_at_10 | 41.760000000000005 | | precision_at_100 | 4.982 | | precision_at_1000 | 0.515 | | precision_at_3 | 74.944 | | precision_at_5 | 62.705999999999996 | | recall_at_1 | 27.173000000000002 | | recall_at_10 | 82.878 | | recall_at_100 | 94.527 | | recall_at_1000 | 98.24199999999999 | | recall_at_3 | 55.589 | | recall_at_5 | 69.476 | | main_score | 84.043 |
8. MTEB VideoRetrieval (default)
- Task Type: Retrieval
- Dataset Split: dev | Metric Type | Value | |-------------|-------| | map_at_1 | 70.1 | | map_at_10 | 79.62 | | map_at_100 | 79.804 | | map_at_1000 | 79.804 | | map_at_3 | 77.81700000000001 | | map_at_5 | 79.037 | | mrr_at_1 | 70.1 | | mrr_at_10 | 79.62 | | mrr_at_100 | 79.804 | | mrr_at_1000 | 79.804 | | mrr_at_3 | 77.81700000000001 | | mrr_at_5 | 79.037 | | ndcg_at_1 | 70.1 | | ndcg_at_10 | 83.83500000000001 | | ndcg_at_100 | 84.584 | | ndcg_at_1000 | 84.584 | | ndcg_at_3 | 80.282 | | ndcg_at_5 | 82.472 | | precision_at_1 | 70.1 | | precision_at_10 | 9.68 | | precision_at_100 | 1.0 |
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models