Conan Embedding V1 Q4 K M GGUF
C
Conan Embedding V1 Q4 K M GGUF
Developed by KenLi315
Conan-embedding-v1 is a Chinese text embedding model developed by the Tencent BAC team, focusing on semantic representation and similarity calculation for Chinese text.
Downloads 48
Release Time : 1/28/2025
Model Overview
This model is primarily used for semantic embedding representation of Chinese text, supporting various natural language processing tasks such as text similarity calculation, classification, clustering, and retrieval.
Model Features
Chinese Optimization
Specifically optimized for Chinese text, capable of better capturing Chinese semantic features.
Multi-task Support
Supports various natural language processing tasks, including text similarity calculation, classification, clustering, and retrieval.
High Performance
Outperforms in multiple Chinese benchmark tests, especially in semantic similarity tasks.
Model Capabilities
Text embedding
Semantic similarity calculation
Text classification
Text clustering
Information retrieval
Re-ranking
Use Cases
Information Retrieval
Medical Q&A Retrieval
Used in medical Q&A retrieval systems to help users quickly find relevant medical information.
Performs well on the CMedqaRetrieval dataset, achieving a map@100 of 42.495
Text Similarity
Q&A Pair Matching
Determines the semantic relevance between questions and answers.
Achieves a cos_sim_spearman of 74.507 on the BQ dataset
Text Classification
Product Review Classification
Performs sentiment classification on product reviews from e-commerce platforms.
Achieves an accuracy of 90.319% on the JDReview classification task
🚀 conan-embedding
This is an embedding model named conan-embedding
, based on the TencentBAC/Conan-embedding-v1
base model. It uses the sentence-transformers
library and has achieved certain performance metrics on multiple tasks in the MTEB benchmark.
📚 Documentation
Model Information
Property | Details |
---|---|
Tags | mteb, llama-cpp, gguf-my-repo |
Library Name | sentence-transformers |
Base Model | TencentBAC/Conan-embedding-v1 |
License | cc-by-nc-4.0 |
Model Results
The model has been evaluated on various tasks and datasets, with the following performance metrics:
1. STS (Semantic Textual Similarity) Tasks
- MTEB AFQMC:
- cos_sim_pearson: 56.613572467148856
- cos_sim_spearman: 60.66446211824284
- euclidean_pearson: 58.42080485872613
- euclidean_spearman: 59.82750030458164
- manhattan_pearson: 58.39885271199772
- manhattan_spearman: 59.817749720366734
- MTEB ATEC:
- cos_sim_pearson: 56.60530380552331
- cos_sim_spearman: 58.63822441736707
- euclidean_pearson: 62.18551665180664
- euclidean_spearman: 58.23168804495912
- manhattan_pearson: 62.17191480770053
- manhattan_spearman: 58.22556219601401
- MTEB BQ:
- cos_sim_pearson: 72.6472074172711
- cos_sim_spearman: 74.50748447236577
- euclidean_pearson: 72.51833296451854
- euclidean_spearman: 73.9898922606105
- manhattan_pearson: 72.50184948939338
- manhattan_spearman: 73.97797921509638
- MTEB LCQMC:
- cos_sim_pearson: 73.18906216730208
- cos_sim_spearman: 79.44570226735877
- euclidean_pearson: 78.8105072242798
- euclidean_spearman: 79.15605680863212
- manhattan_pearson: 78.80576507484064
- manhattan_spearman: 79.14625534068364
- MTEB PAWSX:
- cos_sim_pearson: 40.01998290519605
- cos_sim_spearman: 46.5989769986853
- euclidean_pearson: 45.37905883182924
- euclidean_spearman: 46.22213849806378
- manhattan_pearson: 45.40925124776211
- manhattan_spearman: 46.250705124226386
- MTEB QBQTC:
- cos_sim_pearson: 42.719516197112526
- cos_sim_spearman: 44.57507789581106
- euclidean_pearson: 35.73062264160721
- euclidean_spearman: 40.473523909913695
- manhattan_pearson: 35.69868964086357
- manhattan_spearman: 40.46349925372903
- MTEB STS22 (zh):
- cos_sim_pearson: 62.340118285801104
- cos_sim_spearman: 67.72781908620632
- euclidean_pearson: 63.161965746091596
- euclidean_spearman: 67.36825684340769
- manhattan_pearson: 63.089863788261425
- manhattan_spearman: 67.40868898995384
- MTEB STSB: (Metrics not fully provided in the original)
2. Classification Tasks
- MTEB AmazonReviewsClassification (zh):
- accuracy: 50.308
- f1: 46.927458607895126
- MTEB IFlyTek:
- accuracy: 51.94305502116199
- f1: 39.82197338426721
- MTEB JDReview:
- accuracy: 90.31894934333957
- ap: 63.89821836499594
- f1: 85.93687177603624
- MTEB MassiveIntentClassification (zh-CN):
- accuracy: 78.13718897108272
- f1: 74.07613180855328
- MTEB MassiveScenarioClassification (zh-CN):
- accuracy: 86.20040349697376
- f1: 85.05282136519973
- MTEB MultilingualSentiment:
- accuracy: 78.57666666666667
- f1: 78.23373528202681
- MTEB OnlineShopping:
- accuracy: 95.06999999999998
- ap: 93.45104559324996
- f1: 95.06036329426092
3. Clustering Tasks
- MTEB CLSClusteringP2P:
- v_measure: 60.63545326048343
- MTEB CLSClusteringS2S:
- v_measure: 52.64834762325994
4. Reranking Tasks
- MTEB CMedQAv1:
- map: 91.38528814655234
- mrr: 93.35857142857144
- MTEB CMedQAv2:
- map: 89.72084678877096
- mrr: 91.74380952380953
- MTEB MMarcoReranking:
- map: 41.58107192600853
- mrr: 41.37063492063492
5. Retrieval Tasks
- MTEB CmedqaRetrieval:
- map_at_1: 26.987
- map_at_10: 40.675
- map_at_100: 42.495
- map_at_1000: 42.596000000000004
- map_at_3: 36.195
- map_at_5: 38.704
- mrr_at_1: 41.21
- mrr_at_10: 49.816
- mrr_at_100: 50.743
- mrr_at_1000: 50.77700000000001
- mrr_at_3: 47.312
- mrr_at_5: 48.699999999999996
- ndcg_at_1: 41.21
- ndcg_at_10: 47.606
- ndcg_at_100: 54.457
- ndcg_at_1000: 56.16100000000001
- ndcg_at_3: 42.108000000000004
- ndcg_at_5: 44.393
- precision_at_1: 41.21
- precision_at_10: 10.593
- precision_at_100: 1.609
- precision_at_1000: 0.183
- precision_at_3: 23.881
- precision_at_5: 17.339
- recall_at_1: 26.987
- recall_at_10: 58.875
- recall_at_100: 87.023
- recall_at_1000: 98.328
- recall_at_3: 42.265
- recall_at_5: 49.334
- MTEB CovidRetrieval:
- map_at_1: 83.693
- map_at_10: 90.098
- map_at_100: 90.145
- map_at_1000: 90.146
- map_at_3: 89.445
- map_at_5: 89.935
- mrr_at_1: 83.878
- mrr_at_10: 90.007
- mrr_at_100: 90.045
- mrr_at_1000: 90.046
- mrr_at_3: 89.34
- mrr_at_5: 89.835
- ndcg_at_1: 84.089
- ndcg_at_10: 92.351
- ndcg_at_100: 92.54599999999999
- ndcg_at_1000: 92.561
- ndcg_at_3: 91.15299999999999
- ndcg_at_5: 91.968
- precision_at_1: 84.089
- precision_at_10: 10.011000000000001
- precision_at_100: 1.009
- precision_at_1000: 0.101
- precision_at_3: 32.28
- precision_at_5: 19.789
- recall_at_1: 83.693
- recall_at_10: 99.05199999999999
- recall_at_100: 99.895
- recall_at_1000: 100
- recall_at_3: 95.917
- recall_at_5: 97.893
- MTEB DuRetrieval:
- map_at_1: 26.924
- map_at_10: 81.392
- map_at_100: 84.209
- map_at_1000: 84.237
- map_at_3: 56.998000000000005
- map_at_5: 71.40100000000001
- mrr_at_1: 91.75
- mrr_at_10: 94.45
- mrr_at_100: 94.503
- mrr_at_1000: 94.505
- mrr_at_3: 94.258
- mrr_at_5: 94.381
- ndcg_at_1: 91.75
- ndcg_at_10: 88.53
- ndcg_at_100: 91.13900000000001
- ndcg_at_1000: 91.387
- ndcg_at_3: 87.925
- ndcg_at_5: 86.461
- precision_at_1: 91.75
- precision_at_10: 42.05
- precision_at_100: 4.827
- precision_at_1000: 0.48900000000000005
- precision_at_3: 78.55
- precision_at_5: 65.82000000000001
- recall_at_1: 26.924
- recall_at_10: 89.338
- recall_at_100: 97.856
- recall_at_1000: 99.11
- recall_at_3: 59.202999999999996
- recall_at_5: 75.642
- MTEB EcomRetrieval:
- map_at_1: 54.800000000000004
- map_at_10: 65.613
- map_at_100: 66.185
- map_at_1000: 66.191
- map_at_3: 62.8
- map_at_5: 64.535
- mrr_at_1: 54.800000000000004
- mrr_at_10: 65.613
- mrr_at_100: 66.185
- mrr_at_1000: 66.191
- mrr_at_3: 62.8
- mrr_at_5: 64.535
- ndcg_at_1: 54.800000000000004
- ndcg_at_10: 70.991
- ndcg_at_100: 73.434
- ndcg_at_1000: 73.587
- ndcg_at_3: 65.324
- ndcg_at_5: 68.431
- precision_at_1: 54.800000000000004
- precision_at_10: 8.790000000000001
- precision_at_100: 0.9860000000000001
- precision_at_1000: 0.1
- precision_at_3: 24.2
- precision_at_5: 16.02
- recall_at_1: 54.800000000000004
- recall_at_10: 87.9
- recall_at_100: 98.6
- recall_at_1000: 99.8
- recall_at_3: 72.6
- recall_at_5: 80.10000000000001
- MTEB MMarcoRetrieval:
- map_at_1: 68.33
- map_at_10: 78.261
- map_at_100: 78.522
- map_at_1000: 78.527
- map_at_3: 76.236
- map_at_5: 77.557
- mrr_at_1: 70.602
- mrr_at_10: 78.779
- mrr_at_100: 79.00500000000001
- mrr_at_1000: 79.01
- mrr_at_3: 77.037
- mrr_at_5: 78.157
- ndcg_at_1: 70.602
- ndcg_at_10: 82.254
- ndcg_at_100: 83.319
- ndcg_at_1000: 83.449
- ndcg_at_3: 78.46
- ndcg_at_5: 80.679
- precision_at_1: 70.602
- precision_at_10: 9.989
- precision_at_100: 1.05
- precision_at_1000: 0.106
- precision_at_3: 29.598999999999997
- precision_at_5: 18.948
- recall_at_1: 68.33
- recall_at_10: 94.00800000000001
- recall_at_100: 98.589
- recall_at_1000: 99.60799999999999
- recall_at_3: 84.057
- recall_at_5: 89.32900000000001
- MTEB MedicalRetrieval:
- map_at_1: 56.8
- map_at_10: 64.199
- map_at_100: 64.89
- map_at_1000: 64.917
- map_at_3: 62.383
- map_at_5: 63.378
- mrr_at_1: 56.8
- mrr_at_10: 64.199
- mrr_at_100: 64.89
- mrr_at_1000: 64.917
- mrr_at_3: 62.383
- mrr_at_5: 63.378
- ndcg_at_1: 56.8
- ndcg_at_10: 67.944
- ndcg_at_100: 71.286
- ndcg_at_1000: 71.879
- ndcg_at_3: 64.163
- ndcg_at_5: 65.96600000000001
- precision_at_1: 56.8
- precision_at_10: 7.9799999999999995
- precision_at_100: 0.954
- precision_at_1000: 0.1
- precision_at_3: 23.1
- precision_at_5: 14.74
- recall_at_1: 56.8
- recall_at_10: 79.80000000000001
- recall_at_100: 95.39999999999999
- recall_at_1000: 99.8
- recall_at_3: 69.3
- recall_at_5: 73.7
6. PairClassification Tasks
- MTEB Cmnli:
- cos_sim_accuracy: 85.91701743836441
- cos_sim_ap: 92.53650618807644
- cos_sim_f1: 86.80265975431082
- cos_sim_precision: 83.79025239338556
- cos_sim_recall: 90.039747486556
- dot_accuracy: 77.17378232110643
- dot_ap: 85.40244368166546
- dot_f1: 79.03038001481951
- dot_precision: 72.20502901353966
- dot_recall: 87.2808043020809
- euclidean_accuracy: 84.65423932651834
- euclidean_ap: 91.47775530034588
- euclidean_f1: 85.64471499723298
- euclidean_precision: 81.31567885666246
- euclidean_recall: 90.46060322656068
- manhattan_accuracy: 84.58208057726999
- manhattan_ap: 91.46228709402014
- manhattan_f1: 85.6631626034444
- manhattan_precision: 82.10075026795283
- manhattan_recall: 89.5487491232172
- max_accuracy: 85.91701743836441
- max_ap: 92.53650618807644
- max_f1: 86.80265975431082
- MTEB Ocnli:
- cos_sim_accuracy: 85.43584190579317
- cos_sim_ap: 90.76665640338129
- cos_sim_f1: 86.5021770682148
- cos_sim_precision: 79.82142857142858
- cos_sim_recall: 94.40337909186906
- dot_accuracy: 78.66811044937737
- dot_ap: 85.84084363880804
- dot_f1: 80.10075566750629
- dot_precision: 76.58959537572254
- dot_recall: 83.9493136219641
- euclidean_accuracy: 84.46128857606931
- euclidean_ap: 88.62351100230491
- euclidean_f1: 85.7709469509172
- euclidean_precision: 80.8411214953271
- euclidean_recall: 91.34107708553326
- manhattan_accuracy: 84.51543042772063
- manhattan_ap: 88.53975607870393
- manhattan_f1: 85.75697211155378
- manhattan_precision: 81.14985862393968
- manhattan_recall: 90.91869060190075
- max_accuracy: 85.43584190579317
- max_ap: 90.76665640338129
- max_f1: 86.5021770682148
📄 License
This model is released under the cc-by-nc-4.0
license.
Jina Embeddings V3
Jina Embeddings V3 is a multilingual sentence embedding model supporting over 100 languages, specializing in sentence similarity and feature extraction tasks.
Text Embedding
Transformers Supports Multiple Languages

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
A cross-encoder model trained on the MS Marco passage ranking task for query-passage relevance scoring in information retrieval
Text Embedding English
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
A sparse retrieval model based on distillation technology, optimized for OpenSearch, supporting inference-free document encoding with improved search relevance and efficiency over V1
Text Embedding
Transformers English

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
A biomedical entity representation model based on PubMedBERT, optimized for semantic relation capture through self-aligned pre-training
Text Embedding English
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large is a powerful sentence transformer model focused on sentence similarity and text embedding tasks, excelling in multiple benchmark tests.
Text Embedding English
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 is an English sentence transformer model focused on sentence similarity tasks, excelling in multiple text embedding benchmarks.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base is a multilingual sentence embedding model supporting over 50 languages, suitable for tasks like sentence similarity calculation.
Text Embedding
Transformers Supports Multiple Languages

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT is a chemical language model designed to achieve fully machine-driven ultrafast polymer informatics. It maps PSMILES strings into 600-dimensional dense fingerprints to numerically represent polymer chemical structures.
Text Embedding
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
A sentence embedding model based on Turkish BERT, optimized for semantic similarity tasks
Text Embedding
Transformers Other

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
A text embedding model fine-tuned based on BAAI/bge-small-en-v1.5, trained with the MEDI dataset and MTEB classification task datasets, optimized for query encoding in retrieval tasks.
Text Embedding
Safetensors English
G
avsolatorio
945.68k
29
Featured Recommended AI Models