Fi Core News Sm
CPU-optimized Finnish language processing pipeline with NLP features including token classification and dependency parsing
Downloads 45
Release Time : 5/2/2022
Model Overview
Small Finnish language model provided by spaCy, supporting basic NLP tasks like POS tagging, named entity recognition, and dependency parsing
Model Features
CPU Optimization
Lightweight model specifically optimized for CPU processing
Comprehensive NLP Components
Includes complete NLP processing components like POS tagger, dependency parser, and named entity recognizer
High-Accuracy POS Tagging
POS tagging accuracy reaches 93.3% (XPOS) and 92.6% (UPOS)
Model Capabilities
POS Tagging
Named Entity Recognition
Dependency Parsing
Lemmatization
Sentence Segmentation
Morphological Analysis
Use Cases
Text Processing
Finnish Text Analysis
Performs grammatical analysis and structural parsing of Finnish text
Can identify dependency relationships between sentence components
Information Extraction
Extracts named entities from Finnish text
NER F-score reaches 76.6%
Linguistic Applications
Morphological Analysis
Analyzes morphological features of Finnish words
Morphological feature accuracy of 86.6%
🚀 fi_core_news_sm
This is a Finnish pipeline optimized for CPU, which can handle tasks such as token classification, including NER, TAG, POS, etc.
📚 Documentation
Details: https://spacy.io/models/fi#fi_core_news_sm
The Finnish pipeline is optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
Property | Details |
---|---|
Name | fi_core_news_sm |
Version | 3.7.0 |
spaCy | >=3.7.0,<3.8.0 |
Default Pipeline | tok2vec , tagger , morphologizer , parser , lemmatizer , attribute_ruler , ner |
Components | tok2vec , tagger , morphologizer , parser , lemmatizer , senter , attribute_ruler , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD Finnish TDT v2.8 (Ginter, Filip; Kanerva, Jenna; Laippala, Veronika; Miekka, Niko; Missilä, Anna; Ojala, Stina; Pyysalo, Sampo) TurkuONE (ffe2040e) (Jouni Luoma, Li-Hsin Chang, Filip Ginter, Sampo Pyysalo) |
License | CC BY-SA 4.0 |
Author | Explosion |
Model Index
The fi_core_news_sm
model has achieved the following results in various token - classification tasks:
Task | Metric | Value |
---|---|---|
NER | NER Precision | 0.7942386831 |
NER | NER Recall | 0.7396660279 |
NER | NER F Score | 0.7659815734 |
TAG | TAG (XPOS) Accuracy | 0.9334610123 |
POS | POS (UPOS) Accuracy | 0.9256949004 |
MORPH | Morph (UFeats) Accuracy | 0.8656455142 |
LEMMA | Lemma Accuracy | 0.8313131588 |
UNLABELED_DEPENDENCIES | Unlabeled Attachment Score (UAS) | 0.787412632 |
LABELED_DEPENDENCIES | Labeled Attachment Score (LAS) | 0.7167692749 |
SENTS | Sentences F - Score | 0.8925925926 |
Label Scheme
View label scheme (2145 labels for 4 components)
Component | Labels |
---|---|
tagger |
A , Adj , Adp , Adv , Adv_V , C , C_V , Foreign , Interj , N , Num , Pron , Punct , Symb , V , V_Pron , _SP |
morphologizer |
Case=Nom|Number=Sing|POS=NOUN , NumType=Ord|POS=ADJ , Case=Ade|Number=Sing|POS=NOUN , Case=Nom|Derivation=U|Number=Sing|POS=NOUN , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act , POS=ADV , Case=Par|Degree=Pos|Number=Plur|POS=ADJ , POS=CCONJ , Case=Par|Degree=Pos|Derivation=Inen|Number=Plur|POS=ADJ , Case=Par|Number=Plur|POS=NOUN , Case=Ill|Number=Sing|POS=NOUN , POS=PUNCT , Case=Nom|Degree=Pos|Derivation=Lainen|Number=Sing|POS=ADJ , POS=SCONJ , Case=Nom|Number=Sing|Number[psor]=Plur|POS=NOUN|Person[psor]=1 , Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Case=Acc|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Gen|Number=Sing|POS=NOUN , Case=Abl|Degree=Pos|Derivation=Lainen|Number=Sing|POS=ADJ , Clitic=Kaan|Mood=Ind|Number=Sing|POS=VERB|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Mood=Ind|Number=Sing|POS=VERB|Person=0|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Derivation=Lainen|Number=Sing|POS=ADJ , Case=Nom|Number=Sing|POS=PROPN , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Number=Sing|POS=PRON|PronType=Dem , Clitic=Kin|POS=ADV , Case=Gen|Number=Plur|POS=PROPN , Case=Ess|Number=Sing|POS=NOUN , Case=Ill|Number=Sing|POS=PRON|Person=1|PronType=Prs , Case=Gen|Degree=Pos|Number=Sing|POS=ADJ , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Gen|Number=Sing|POS=PRON|PronType=Dem , Case=Ela|Derivation=Llinen,Vs|Number=Sing|POS=NOUN , POS=ADJ , Case=Gen|Number=Plur|POS=NOUN , Case=Par|Number=Sing|POS=PRON|PronType=Dem , Number=Sing|POS=AUX|Person=3|Polarity=Neg|VerbForm=Fin|Voice=Act , Case=Ine|Number=Sing|POS=PRON|PronType=Ind , Case=Ine|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Past|VerbForm=Part|Voice=Pass , Case=Ade|Number=Sing|POS=PRON|PronType=Ind , Case=Ins|Number=Plur|POS=NOUN , Case=Gen|Number=Sing|POS=PROPN , Case=Par|Number=Sing|POS=NOUN , Mood=Ind|Number=Sing|POS=AUX|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Number=Sing|POS=ADJ , Case=Nom|Number=Plur|POS=NOUN , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Case=All|Number=Sing|POS=PRON|PronType=Dem , Case=Ill|InfForm=3|Number=Sing|POS=VERB|VerbForm=Inf|Voice=Act , Case=Nom|Clitic=Kin|Number=Plur|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Plur|POS=VERB|Person=1|Tense=Past|VerbForm=Fin|Voice=Act , Case=Gen|Number=Sing|POS=NOUN|Style=Coll , Case=All|Derivation=U|Number=Sing|POS=NOUN , AdpType=Post|POS=ADP , Case=Nom|Degree=Pos|Derivation=Llinen|Number=Sing|POS=ADJ , Case=Gen|Number=Sing|POS=PRON|PronType=Rcp , Case=Abl|Number=Sing|POS=NOUN , Case=All|Number=Sing|POS=PRON|PronType=Rcp , Case=Ine|InfForm=3|Number=Sing|POS=VERB|VerbForm=Inf|Voice=Act , Case=Par|Number=Plur|POS=PRON|PronType=Ind , Case=Par|Derivation=Ja|Number=Plur|POS=NOUN , Case=Gen|Derivation=Vs|Number=Sing|POS=NOUN , Case=Par|Number=Sing|POS=PRON|PronType=Ind , Case=Par|Derivation=Ja|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Derivation=Inen|Number=Sing|POS=ADJ , Case=Tra|Number=Sing|POS=NOUN , Case=Ela|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Past|VerbForm=Part|Voice=Act , Case=Par|Degree=Pos|Number=Sing|POS=ADJ , Case=Par|Clitic=Kin|Number=Sing|POS=NOUN , InfForm=1|Number=Sing|POS=VERB|VerbForm=Inf|Voice=Act , Case=Nom|Derivation=Ja|Number=Sing|POS=NOUN , Case=Ela|Number=Sing|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Ine|Number=Sing|POS=NOUN|Person[psor]=3 , InfForm=1|Number=Sing|POS=AUX|VerbForm=Inf|Voice=Act , Derivation=Sti|POS=ADV , Mood=Cnd|Number=Sing|POS=AUX|Person=3|VerbForm=Fin|Voice=Act , Case=Ill|Number=Sing|POS=PRON|PronType=Int , Mood=Ind|Number=Sing|POS=VERB|Person=0|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Ill|Number=Plur|POS=NOUN , Case=Par|Degree=Pos|Number=Plur|POS=VERB|PartForm=Pres|VerbForm=Part|Voice=Act , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Agt|VerbForm=Part|Voice=Act , Case=Nom|Number=Plur|POS=NOUN|Person[psor]=3 , Case=Par|Number=Sing|POS=PRON|PronType=Rel , Case=Ine|Clitic=Kin|Number=Plur|POS=NOUN , Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , Case=Gen|Number=Sing|POS=PRON|PronType=Ind , Case=Gen|NumType=Card|Number=Sing|POS=NUM , Case=All|Number=Sing|POS=NOUN , Case=Nom|Number=Sing|POS=PRON|PronType=Ind , Case=Nom|Number=Sing|POS=PRON|PronType=Rel , Case=Ill|Number=Sing|POS=NOUN|Person[psor]=3 , Case=Par|Degree=Pos|Derivation=Inen|Number=Sing|POS=ADJ , Case=Gen|Degree=Pos|Derivation=Lainen|Number=Sing|POS=ADJ , Case=Gen|Derivation=Inen|NumType=Ord|Number=Sing|POS=ADJ , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Pres|VerbForm=Part|Voice=Act , Case=Gen|Degree=Pos|Number=Sing|POS=AUX|PartForm=Pres|VerbForm=Part|Voice=Act , Case=Nom|Derivation=Ja|Number=Plur|POS=NOUN|Typo=Yes , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Par|Number=Sing|POS=PRON|Person[psor]=3|Reflex=Yes , Case=All|Degree=Pos|Derivation=Inen|Number=Plur|POS=ADJ , Case=All|Degree=Pos|Number=Plur|POS=ADJ , Case=All|Number=Plur|POS=NOUN , Case=Ela|Derivation=U|Number=Plur|POS=NOUN , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Pres|VerbForm=Part|Voice=Pass , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Past|Typo=Yes|VerbForm=Part|Voice=Act , Case=Nom|Clitic=Kaan|Number=Sing|POS=NOUN , Foreign=Yes|POS=X , Clitic=Ka|Number=Sing|POS=AUX|Person=3|Polarity=Neg|VerbForm=Fin|Voice=Act , Case=Ela|Degree=Pos|Number=Sing|POS=ADJ , Connegative=Yes|Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin , Case=Tra|Degree=Pos|Derivation=Inen|Number=Sing|POS=ADJ , Mood=Cnd|Number=Sing|POS=AUX|Person=0|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Cmp|Number=Sing|POS=ADJ , Case=Nom|Number=Sing|POS=PRON|Person=1|PronType=Prs , Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin|Voice=Act , Mood=Ind|Number=Sing|POS=VERB|Person=1|Tense=Past|VerbForm=Fin|Voice=Act , Case=Ade|Number=Sing|POS=PRON|PronType=Rel , Mood=Ind|POS=VERB|Tense=Past|VerbForm=Fin|Voice=Pass , Case=All|Number=Sing|POS=PRON|PronType=Ind , Case=All|Number=Plur|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Nom|Number=Plur|POS=PRON|PronType=Ind , Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Number=Plur|POS=PRON|Person=3|PronType=Prs , Clitic=Kin|Mood=Ind|Number=Plur|POS=AUX|Person=3|Tense=Past|VerbForm=Fin|Voice=Act , Case=Nom|Degree=Pos|Number=Plur|POS=VERB|PartForm=Past|VerbForm=Part|Voice=Act , Case=Par|Derivation=Vs|Number=Sing|POS=NOUN , Case=Gen|Number=Sing|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Gen|Degree=Pos|Number=Sing|POS=VERB|PartForm=Pres|VerbForm=Part|Voice=Act , Case=Nom|Number=Sing|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Ill|Derivation=Ja|Number=Sing|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Mood=Cnd|Number=Plur|POS=AUX|Person=3|VerbForm=Fin|Voice=Act , Case=Ine|Number=Sing|POS=PRON|PronType=Dem , Case=Ine|Number=Sing|POS=PROPN , Mood=Ind|Number=Sing|POS=AUX|Person=0|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Nom|Number=Sing|POS=PRON , Case=Nom|Derivation=Inen|NumType=Ord|Number=Sing|POS=ADJ , Case=Nom|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Ess|Degree=Pos|Number=Sing|POS=VERB|PartForm=Past|VerbForm=Part|Voice=Act , Clitic=Ko|Mood=Cnd|Number=Plur|POS=AUX|Person=1|VerbForm=Fin|Voice=Act , Case=Par|Number=Plur|POS=PRON|Person=3|PronType=Prs , Clitic=Ko|Mood=Ind|Number=Sing|POS=VERB|Person=0|Tense=Pres|VerbForm=Fin|Voice=Act , Case=Gen|Number=Plur|POS=PRON|Person=1|PronType=Prs , Case=Ine|Degree=Pos|Number=Sing|POS=ADJ , Case=Ine|Number=Sing|Number[psor]=Plur|POS=NOUN|Person[psor]=1|Style=Coll , Case=Ade|Number=Sing|POS=NOUN|Person[psor]=3 , Derivation=Ttain|POS=ADV , Case=Nom|Degree=Pos|Number=Sing|POS=VERB|PartForm=Pres|Typo=Yes|VerbForm=Part|Voice=Act , Case=Nom|Clitic=Kin|Degree=Pos|Number=Sing|POS=ADJ , Case=Ine|InfForm=2|Number=Sing|Number[psor]=Sing|POS=VERB|Person[psor]=1|VerbForm=Inf|Voice=Act , Case=All|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Ela|Degree=Pos|Number=Plur|POS=ADJ , Case=Ela|Number=Plur|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Ine|Number=Plur|POS=NOUN , Case=Com|POS=NOUN|Person[psor]=3 , Case=Com|POS=PRON|Person[psor]=3|PronType=Ind , Number[psor]=Sing|POS=ADV|Person[psor]=1 , Case=Par|Number=Sing|Number[psor]=Sing|POS=PRON|Person[psor]=1|Reflex=Yes , Case=Par|Number=Sing|POS=PRON|PronType=Int , Clitic=Ko|Mood=Ind|Number=Sing|POS=AUX|Person=1|Tense=Pres|VerbForm=Fin|Voice=Act , Clitic=Ko|Mood=Cnd|Number=Sing|POS=AUX|Person=3|VerbForm=Fin|Voice=Act , POS=SPACE , Case=Ine|Number=Sing|POS=PRON|PronType=Rel , Case=Gen|Number=Sing|POS=PRON|Person=3|PronType=Prs , Case=Gen|Derivation=Vs|Number=Sing|POS=NOUN|Person[psor]=3 , Case=Par|Derivation=Minen|Number=Sing|POS=NOUN , Case=Nom|Degree=Pos|Derivation=Lainen|Number=Plur|POS=ADJ , Case=Ade|Degree=Pos|Derivation=Inen|Number=Sing|POS=ADJ , Connegative=Yes|Mood=Ind|POS=VERB|Tense=Pres|VerbForm=Fin|Voice=Pass , Case=Ill|Degree=Cmp|Number=Sing|POS=ADJ , Number=Sing|POS=SCONJ|Person=1|Polarity=Neg|VerbForm=Fin|Voice=Act , Case=Par|Number=Sing|Number[psor]=Sing|POS=NOUN|Person[psor]=1 , Case=Par|Number=Sing|POS=NOUN|Person[psor]=3 , AdpType=Post|POS=ADP|Person[psor]=3 , Mood=Ind|Number=Plur|POS=VERB|Person=3|Tense=Pres|VerbForm=Fin|Voice=Act , Mood=Cnd|Number=Sing|POS=VERB|Person=3|VerbForm=Fin|Vo |
📄 License
The model is released under the CC BY - SA 4.0
license.
Indonesian Roberta Base Posp Tagger
MIT
This is a POS tagging model fine-tuned based on the Indonesian RoBERTa model, trained on the indonlu dataset for Indonesian text POS tagging tasks.
Sequence Labeling
Transformers Other

I
w11wo
2.2M
7
Bert Base NER
MIT
BERT fine-tuned named entity recognition model capable of identifying four entity types: Location (LOC), Organization (ORG), Person (PER), and Miscellaneous (MISC)
Sequence Labeling English
B
dslim
1.8M
592
Deid Roberta I2b2
MIT
This model is a sequence labeling model fine-tuned on RoBERTa, designed to identify and remove Protected Health Information (PHI/PII) from medical records.
Sequence Labeling
Transformers Supports Multiple Languages

D
obi
1.1M
33
Ner English Fast
Flair's built-in fast English 4-class named entity recognition model, based on Flair embeddings and LSTM-CRF architecture, achieving an F1 score of 92.92 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
978.01k
24
French Camembert Postag Model
French POS tagging model based on Camembert-base, trained using the free-french-treebank dataset
Sequence Labeling
Transformers French

F
gilf
950.03k
9
Xlm Roberta Large Ner Spanish
A Spanish named entity recognition model fine-tuned based on the XLM-Roberta-large architecture, with excellent performance on the CoNLL-2002 dataset.
Sequence Labeling
Transformers Spanish

X
MMG
767.35k
29
Nusabert Ner V1.3
MIT
Named entity recognition model fine-tuned on Indonesian NER tasks based on NusaBert-v1.3
Sequence Labeling
Transformers Other

N
cahya
759.09k
3
Ner English Large
Flair framework's built-in large English NER model for 4 entity types, utilizing document-level XLM-R embeddings and FLERT technique, achieving an F1 score of 94.36 on the CoNLL-03 dataset.
Sequence Labeling
PyTorch English
N
flair
749.04k
44
Punctuate All
MIT
A multilingual punctuation prediction model fine-tuned based on xlm-roberta-base, supporting automatic punctuation completion for 12 European languages
Sequence Labeling
Transformers

P
kredor
728.70k
20
Xlm Roberta Ner Japanese
MIT
Japanese named entity recognition model fine-tuned based on xlm-roberta-base
Sequence Labeling
Transformers Supports Multiple Languages

X
tsmatz
630.71k
25
Featured Recommended AI Models