🚀 French Camembert Part - of - Speech Tagging Model
The french - camembert - postag - model is a French part - of - speech tagging model. It addresses the need for accurate grammatical analysis in French text, trained on the free - french - treebank dataset. This model provides reliable tagging results, enabling better natural language processing applications in the French language.
📚 Documentation
About
The french - camembert - postag - model is a part of speech tagging model for French. It was trained on the free - french - treebank dataset available on [github](https://github.com/nicolashernandez/free - french - treebank). The base tokenizer and model used for training is 'camembert - base'.
Supported Tags
It uses the following tags:
Property |
Details |
ADJ |
Adjective |
ADJWH |
Adjective |
ADV |
Adverb |
ADVWH |
Adverb |
CC |
Coordinating conjunction |
CLO |
Pronoun (object) |
CLR |
Pronoun (reflexive) |
CLS |
Pronoun (subject) |
CS |
Subordinating conjunction |
DET |
Determiner |
DETWH |
Determiner |
ET |
Foreign word |
I |
Interjection |
NC |
Common noun |
NPP |
Proper noun |
P |
Preposition |
P+D |
Preposition + Determiner |
PONCT |
Punctuation mark |
PREF |
Prefix |
PRO |
Other pronouns |
PROREL |
Other pronouns (relative) |
PROWH |
Other pronouns (interrogative) |
U |
Unknown |
V |
Verb |
VIMP |
Imperative verb |
VINF |
Infinitive verb |
VPP |
Past participle |
VPR |
Present participle |
VS |
Subjunctive |
More information on the tags can be found here:
http://alpage.inria.fr/statgram/frdep/Publications/crabbecandi - taln2008 - final.pdf
💻 Usage Examples
Basic Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("gilf/french-camembert-postag-model")
model = AutoModelForTokenClassification.from_pretrained("gilf/french-camembert-postag-model")
from transformers import pipeline
nlp_token_class = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
nlp_token_class('Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages')
The lines above would display something like this on a Jupyter notebook:
[{'entity_group': 'NC', 'score': 0.5760144591331482, 'word': '<s>'},
{'entity_group': 'U', 'score': 0.9946700930595398, 'word': 'Face'},
{'entity_group': 'P', 'score': 0.999615490436554, 'word': 'à'},
{'entity_group': 'DET', 'score': 0.9995906352996826, 'word': 'un'},
{'entity_group': 'NC', 'score': 0.9995531439781189, 'word': 'choc'},
{'entity_group': 'ADJ', 'score': 0.999183714389801, 'word': 'inédit'},
{'entity_group': 'P', 'score': 0.3710663616657257, 'word': ','},
{'entity_group': 'DET', 'score': 0.9995903968811035, 'word': 'les'},
{'entity_group': 'NC', 'score': 0.9995649456977844, 'word': 'mesures'},
{'entity_group': 'VPP', 'score': 0.9988670349121094, 'word': 'mises'},
{'entity_group': 'P', 'score': 0.9996246099472046, 'word': 'en'},
{'entity_group': 'NC', 'score': 0.9995329976081848, 'word': 'place'},
{'entity_group': 'P', 'score': 0.9996233582496643, 'word': 'par'},
{'entity_group': 'DET', 'score': 0.9995935559272766, 'word': 'le'},
{'entity_group': 'NC', 'score': 0.9995369911193848, 'word': 'gouvernement'},
{'entity_group': 'V', 'score': 0.9993771314620972, 'word': 'ont'},
{'entity_group': 'VPP', 'score': 0.9991101026535034, 'word': 'permis'},
{'entity_group': 'DET', 'score': 0.9995885491371155, 'word': 'une'},
{'entity_group': 'NC', 'score': 0.9995636343955994, 'word': 'protection'},
{'entity_group': 'ADJ', 'score': 0.9991781711578369, 'word': 'forte'},
{'entity_group': 'CC', 'score': 0.9991298317909241, 'word': 'et'},
{'entity_group': 'ADJ', 'score': 0.9992275238037109, 'word': 'efficace'},
{'entity_group': 'P+D', 'score': 0.9993300437927246, 'word': 'des'},
{'entity_group': 'NC', 'score': 0.8353511393070221, 'word': 'ménages</s>'}]