🚀 LazarusNLP/all-indo-e5-small-v4
This is a sentence-transformers model that maps sentences and paragraphs to a 384-dimensional dense vector space, which can be used for tasks such as clustering or semantic search.
🚀 Quick Start
This model can be used in two ways, with or without the sentence-transformers
library.
📦 Installation
If you want to use the sentence-transformers
library, you need to install it first:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage (Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('LazarusNLP/all-indo-e5-small-v4')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage (HuggingFace Transformers)
Without the sentence-transformers
library, you can use the model as follows:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
model = AutoModel.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
The model was trained with the following parameters:
DataLoader:
MultiDatasetDataLoader.MultiDatasetDataLoader
of length 1669 with parameters:
{'batch_size': 'unknown'}
Loss:
sentence_transformers.losses.CachedMultipleNegativesRankingLoss.CachedMultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()
method:
{
"epochs": 5,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 835,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Information Table
Property |
Details |
Library Name |
sentence-transformers |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity, transformers |
Datasets |
indonli, indolem/indo_story_cloze, unicamp-dl/mmarco, miracl/miracl, nthakur/swim-ir-monolingual, LazarusNLP/multilingual-NLI-26lang-2mil7-id, SEACrowd/wrete, SEACrowd/indolem_ntp, khalidalt/tydiqa-goldp, SEACrowd/facqa, indonesian-nlp/lfqa_id, jakartaresearch/indoqa, jakartaresearch/id-paraphrase-detection |
Citing & Authors