🚀 LazarusNLP/all-indo-e5-small-v4
このモデルはsentence-transformersを使用したモデルです。文章や段落を384次元の密ベクトル空間にマッピングし、クラスタリングや意味検索などのタスクに使用することができます。
🚀 クイックスタート
📦 インストール
sentence-transformersをインストールすると、このモデルを簡単に使用できます。
pip install -U sentence-transformers
💻 使用例
基本的な使用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('LazarusNLP/all-indo-e5-small-v4')
embeddings = model.encode(sentences)
print(embeddings)
高度な使用法
sentence-transformersを使用せずにこのモデルを使用するには、まず入力をTransformerモデルに通し、その後、文脈化された単語埋め込みに対して適切なプーリング操作を適用する必要があります。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
model = AutoModel.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 ドキュメント
評価結果
このモデルの自動評価については、Sentence Embeddings Benchmarkを参照してください: https://seb.sbert.net
学習
このモデルは以下のパラメータで学習されました。
DataLoader:
MultiDatasetDataLoader.MultiDatasetDataLoader
(長さ: 1669) 、パラメータ:
{'batch_size': 'unknown'}
損失関数:
sentence_transformers.losses.CachedMultipleNegativesRankingLoss.CachedMultipleNegativesRankingLoss
、パラメータ:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
メソッドのパラメータ:
{
"epochs": 5,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 835,
"weight_decay": 0.01
}
モデルのアーキテクチャ
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
引用と作者