🚀 LazarusNLP/all-indo-e5-small-v4
这是一个 sentence-transformers 模型,它可以将句子和段落映射到一个 384 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
📦 安装指南
如果你已经安装了 sentence-transformers,使用这个模型会非常简单:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('LazarusNLP/all-indo-e5-small-v4')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
如果你没有安装 sentence-transformers,可以按以下方式使用该模型:首先,将输入数据通过 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
model = AutoModel.from_pretrained('LazarusNLP/all-indo-e5-small-v4')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
🔍 评估结果
要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
🔧 技术细节
训练参数
该模型的训练参数如下:
数据加载器:
MultiDatasetDataLoader.MultiDatasetDataLoader
,长度为 1669,参数如下:
{'batch_size': 'unknown'}
损失函数:
sentence_transformers.losses.CachedMultipleNegativesRankingLoss.CachedMultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
方法的参数:
{
"epochs": 5,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 835,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
📄 数据集信息
属性 |
详情 |
训练数据集 |
indonli、indolem/indo_story_cloze、unicamp-dl/mmarco、miracl/miracl、nthakur/swim-ir-monolingual、LazarusNLP/multilingual-NLI-26lang-2mil7-id、SEACrowd/wrete、SEACrowd/indolem_ntp、khalidalt/tydiqa-goldp、SEACrowd/facqa、indonesian-nlp/lfqa_id、jakartaresearch/indoqa、jakartaresearch/id-paraphrase-detection |
📄 许可证
原文档未提及许可证信息。
📖 引用与作者
原文档未详细描述相关信息。