đ snunlp/KR-SBERT-V40K-klueNLI-augSTS
This is a sentence-transformers model that maps sentences and paragraphs to a 768-dimensional dense vector space. It can be used for tasks such as clustering or semantic search.
đ Quick Start
This section will guide you through the basic usage of the snunlp/KR-SBERT-V40K-klueNLI-augSTS
model.
⨠Features
- Maps sentences and paragraphs to a 768-dimensional dense vector space.
- Suitable for tasks like clustering and semantic search.
đĻ Installation
To use this model, you need to install the sentence-transformers library:
pip install -U sentence-transformers
đģ Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model as follows:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model by passing your input through the transformer model and then applying the right pooling operation on top of the contextualized word embeddings:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
đ Documentation
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Application for document classification
Tutorial in Google Colab: https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM
Model |
Accuracy |
KR-SBERT-Medium-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-augSTS |
0.8511 |
KR-SBERT-V40K-klueNLI-augSTS |
0.8628 |
đ License
Citation
@misc{kr-sbert,
author = {Park, Suzi and Hyopil Shin},
title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snunlp/KR-SBERT}}
}