🚀 snunlp/KR-SBERT-V40K-klueNLI-augSTS
这是一个 sentence-transformers 模型,它可以将句子和段落映射到 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型可通过 sentence-transformers 或 HuggingFace Transformers 两种方式使用,下面为你详细介绍。
📦 安装指南
若要使用 sentence-transformers,可通过以下命令进行安装:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
若未安装 sentence-transformers,可以按以下方式使用模型:首先将输入传递给 Transformer 模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
文档分类应用
Google Colab 教程:https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM
模型 |
准确率 |
KR-SBERT-Medium-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-augSTS |
0.8511 |
KR-SBERT-V40K-klueNLI-augSTS |
0.8628 |
📄 许可证
引用信息
@misc{kr-sbert,
author = {Park, Suzi and Hyopil Shin},
title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snunlp/KR-SBERT}}
}