🚀 snunlp/KR-SBERT-V40K-klueNLI-augSTS
這是一個 sentence-transformers 模型,它可以將句子和段落映射到 768 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
本模型可通過 sentence-transformers 或 HuggingFace Transformers 兩種方式使用,下面為你詳細介紹。
📦 安裝指南
若要使用 sentence-transformers,可通過以下命令進行安裝:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若未安裝 sentence-transformers,可以按以下方式使用模型:首先將輸入傳遞給 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
文檔分類應用
Google Colab 教程:https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM
模型 |
準確率 |
KR-SBERT-Medium-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-STS |
0.8400 |
KR-SBERT-V40K-NLI-augSTS |
0.8511 |
KR-SBERT-V40K-klueNLI-augSTS |
0.8628 |
📄 許可證
引用信息
@misc{kr-sbert,
author = {Park, Suzi and Hyopil Shin},
title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snunlp/KR-SBERT}}
}