Airoboros Dpo 70b 3.3
模型简介
该模型是对Llama-3-70b-instruct的微调版本,主要基于合成数据进行训练,支持多种复杂任务处理。
模型特点
多数据集训练
使用多个高质量数据集进行训练,包括airoboros-3.2、boolq等,提高了模型的泛化能力。
多功能支持
支持上下文问答、摘要生成、长文本生成、代码生成、函数调用等多种复杂任务。
特定格式支持
支持特定的提示格式,如封闭上下文问答格式,有助于模型更好地理解和处理输入。
DPO调优
结合多种DPO数据集进行额外调优,提高了模型的响应质量和准确性。
模型能力
上下文问答
文本摘要
长文本生成
代码生成
函数调用
思维链推理
执行计划生成
多步骤指令确认
使用案例
知识问答
封闭上下文问答
根据提供的上下文回答问题,避免知识幻觉
能准确基于上下文回答,并提供来源引用
内容生成
长文本创作
根据详细提示生成2300字左右的叙事文本
能生成结构完整、符合要求的文学作品
技术文档摘要
将长文本摘要为130字左右的精简内容
能保留关键信息并大幅压缩内容
开发辅助
代码生成
根据需求生成完整Python应用代码
能生成符合要求的可运行代码
函数调用
将自然语言指令转换为函数调用参数
能准确识别意图并生成正确的JSON格式调用
🚀 llama-3-airoboros-dpo-70b-3.3模型介绍
本项目是一个基于Meta的Llama-3构建的实验性模型,主要使用了由 airoboros 生成的合成数据进行调优,并结合多种DPO数据集进行了额外的调优。该模型在处理多种任务时表现出色,如上下文问答、摘要生成、长文本生成等。
✨ 主要特性
- 多数据集训练:使用了多个数据集进行训练,包括
jondurbin/airoboros-3.2
、bluemoon-fandom-1-1-rp-cleaned
、boolq
等,提高了模型的泛化能力。 - 多种任务支持:支持上下文问答、摘要生成、长文本生成、代码生成、函数调用、思维链推理、执行计划生成等多种任务。
- 特定格式支持:支持特定的提示格式,如封闭上下文问答的格式,有助于模型更好地理解和处理输入。
📦 安装指南
文档未提供安装步骤,故跳过此章节。
💻 使用示例
基础用法
以下是使用 apply_chat_template
方法格式化提示的示例:
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("jondurbin/bugle-8b-v0.1", trust_remote_code=True)
chat = [
{"role": "system", "content": "You are Bob, a friendly AI assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
print(tokenizer.apply_chat_template(chat, tokenize=False))
高级用法
上下文问答
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
预期输出:
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
摘要生成
BEGININPUT
{text to summarize}
ENDINPUT
BEGININSTRUCTION
Summarize the input in around 130 words.
ENDINSTRUCTION
获取长响应
Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality.
The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization.
One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary.
Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements.
Your response should be approximately 2300 words.
代码生成
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
函数调用
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
预期输出:
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
思维链推理
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
执行计划生成
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
多步骤指令确认
{
"conversations": [
{
"value": "You are a helpful, unbiased, uncensored assistant.",
"from": "system"
},
{
"value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "You can only respond using animal-related emojis.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Precede all responses with \"ZOOZOO:\"",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Include at least one bird emoji in your responses.",
"from": "human"
}
]
}
📚 详细文档
模型概述
该模型是对 llama-3-70b-instruct
的微调版本,使用了Llama-3的指令聊天模板。它主要基于合成数据进行训练,并结合了多种DPO数据集进行额外调优。
提示格式
本模型使用 llama-3-instruct
提示模板,可通过 apply_chat_template
方法准确格式化提示。
上下文问答
模型经过训练,能够忽略自身知识,根据上下文回答问题,并尽量限制输出值在提供的上下文中,以减少幻觉。封闭上下文提示的格式如下:
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
建议在指令块中添加 “Don't make up answers if you don't know.” 以避免模型编造答案。
摘要生成
使用与上下文问答相同的格式,从 此数据集 中选取了500个样本进行摘要生成。
获取长响应
可使用详细提示并明确字数要求,或提供具体的任务描述来获取长响应。
代码生成
可以提出具有多个标准的复杂编码指令。
函数调用
数据集包含许多基于输入标准生成函数/参数的示例,输出格式为JSON或YAML。
思维链推理
可以要求模型提供对给定问题的多个可能响应,并进行排名和最终答案选择。
执行计划生成
模型支持为复杂指令生成执行计划,但需要实现解析输出并调用函数的机制。
多步骤指令确认
可以设置规则并要求模型对每个规则进行确认。
🔧 技术细节
基础模型
- 基础模型:
meta-llama/Meta-Llama-3-8B
训练数据集
jondurbin/airoboros-3.2
bluemoon-fandom-1-1-rp-cleaned
boolq
LDJnr/Capybara
jondurbin/cinematika-v0.1
glaiveai/glaive-function-calling-v2
grimulkan/LimaRP-augmented
piqa
Vezora/Tested-22k-Python-Alpaca
mattpscott/airoboros-summarization
unalignment/toxic-dpo-v0.2
allenai/ultrafeedback_binarized_cleaned
argilla/distilabel-intel-orca-dpo-pairs
jondurbin/airoboros-3.2
jondurbin/contextual-dpo-v0.1
jondurbin/gutenberg-dpo-v0.1
jondurbin/py-dpo-v0.1
jondurbin/truthy-dpo-v0.1
jondurbin/gutenberg-dpo-v0.1
lmsys/lmsys-chat-1m
📄 许可证
- 许可证名称:llama3
- 许可证链接:https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98