Airoboros Dpo 70b 3.3
模型概述
該模型是對Llama-3-70b-instruct的微調版本,主要基於合成數據進行訓練,支持多種複雜任務處理。
模型特點
多數據集訓練
使用多個高質量數據集進行訓練,包括airoboros-3.2、boolq等,提高了模型的泛化能力。
多功能支持
支持上下文問答、摘要生成、長文本生成、代碼生成、函數調用等多種複雜任務。
特定格式支持
支持特定的提示格式,如封閉上下文問答格式,有助於模型更好地理解和處理輸入。
DPO調優
結合多種DPO數據集進行額外調優,提高了模型的響應質量和準確性。
模型能力
上下文問答
文本摘要
長文本生成
代碼生成
函數調用
思維鏈推理
執行計劃生成
多步驟指令確認
使用案例
知識問答
封閉上下文問答
根據提供的上下文回答問題,避免知識幻覺
能準確基於上下文回答,並提供來源引用
內容生成
長文本創作
根據詳細提示生成2300字左右的敘事文本
能生成結構完整、符合要求的文學作品
技術文檔摘要
將長文本摘要為130字左右的精簡內容
能保留關鍵信息並大幅壓縮內容
開發輔助
代碼生成
根據需求生成完整Python應用代碼
能生成符合要求的可運行代碼
函數調用
將自然語言指令轉換為函數調用參數
能準確識別意圖並生成正確的JSON格式調用
🚀 llama-3-airoboros-dpo-70b-3.3模型介紹
本項目是一個基於Meta的Llama-3構建的實驗性模型,主要使用了由 airoboros 生成的合成數據進行調優,並結合多種DPO數據集進行了額外的調優。該模型在處理多種任務時表現出色,如上下文問答、摘要生成、長文本生成等。
✨ 主要特性
- 多數據集訓練:使用了多個數據集進行訓練,包括
jondurbin/airoboros-3.2
、bluemoon-fandom-1-1-rp-cleaned
、boolq
等,提高了模型的泛化能力。 - 多種任務支持:支持上下文問答、摘要生成、長文本生成、代碼生成、函數調用、思維鏈推理、執行計劃生成等多種任務。
- 特定格式支持:支持特定的提示格式,如封閉上下文問答的格式,有助於模型更好地理解和處理輸入。
📦 安裝指南
文檔未提供安裝步驟,故跳過此章節。
💻 使用示例
基礎用法
以下是使用 apply_chat_template
方法格式化提示的示例:
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("jondurbin/bugle-8b-v0.1", trust_remote_code=True)
chat = [
{"role": "system", "content": "You are Bob, a friendly AI assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
print(tokenizer.apply_chat_template(chat, tokenize=False))
高級用法
上下文問答
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
預期輸出:
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
摘要生成
BEGININPUT
{text to summarize}
ENDINPUT
BEGININSTRUCTION
Summarize the input in around 130 words.
ENDINSTRUCTION
獲取長響應
Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality.
The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization.
One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary.
Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements.
Your response should be approximately 2300 words.
代碼生成
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
函數調用
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
預期輸出:
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
思維鏈推理
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
執行計劃生成
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
多步驟指令確認
{
"conversations": [
{
"value": "You are a helpful, unbiased, uncensored assistant.",
"from": "system"
},
{
"value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "You can only respond using animal-related emojis.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Precede all responses with \"ZOOZOO:\"",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Include at least one bird emoji in your responses.",
"from": "human"
}
]
}
📚 詳細文檔
模型概述
該模型是對 llama-3-70b-instruct
的微調版本,使用了Llama-3的指令聊天模板。它主要基於合成數據進行訓練,並結合了多種DPO數據集進行額外調優。
提示格式
本模型使用 llama-3-instruct
提示模板,可通過 apply_chat_template
方法準確格式化提示。
上下文問答
模型經過訓練,能夠忽略自身知識,根據上下文回答問題,並儘量限制輸出值在提供的上下文中,以減少幻覺。封閉上下文提示的格式如下:
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
建議在指令塊中添加 “Don't make up answers if you don't know.” 以避免模型編造答案。
摘要生成
使用與上下文問答相同的格式,從 此數據集 中選取了500個樣本進行摘要生成。
獲取長響應
可使用詳細提示並明確字數要求,或提供具體的任務描述來獲取長響應。
代碼生成
可以提出具有多個標準的複雜編碼指令。
函數調用
數據集包含許多基於輸入標準生成函數/參數的示例,輸出格式為JSON或YAML。
思維鏈推理
可以要求模型提供對給定問題的多個可能響應,並進行排名和最終答案選擇。
執行計劃生成
模型支持為複雜指令生成執行計劃,但需要實現解析輸出並調用函數的機制。
多步驟指令確認
可以設置規則並要求模型對每個規則進行確認。
🔧 技術細節
基礎模型
- 基礎模型:
meta-llama/Meta-Llama-3-8B
訓練數據集
jondurbin/airoboros-3.2
bluemoon-fandom-1-1-rp-cleaned
boolq
LDJnr/Capybara
jondurbin/cinematika-v0.1
glaiveai/glaive-function-calling-v2
grimulkan/LimaRP-augmented
piqa
Vezora/Tested-22k-Python-Alpaca
mattpscott/airoboros-summarization
unalignment/toxic-dpo-v0.2
allenai/ultrafeedback_binarized_cleaned
argilla/distilabel-intel-orca-dpo-pairs
jondurbin/airoboros-3.2
jondurbin/contextual-dpo-v0.1
jondurbin/gutenberg-dpo-v0.1
jondurbin/py-dpo-v0.1
jondurbin/truthy-dpo-v0.1
jondurbin/gutenberg-dpo-v0.1
lmsys/lmsys-chat-1m
📄 許可證
- 許可證名稱:llama3
- 許可證鏈接:https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98