🚀 韩语情感分类模型
本项目是一个韩语情感分类模型,能够进行60种细分的情感分类。它基于特定数据集进行训练,通过对父模型进行微调得到,具有一定的应用价值。
🚀 快速开始
本模型可通过Hugging Face平台使用,你可以按照以下步骤进行操作:
- 访问模型页面:hun3359/klue-bert-base-sentiment
- 按照平台提供的使用说明进行调用。
✨ 主要特性
- 细粒度分类:能够进行60种细分的情感分类,提供更详细的情感分析结果。
- 基于特定数据集:使用Aihub-감성대화말뭉치数据集进行训练,保证了模型的针对性和准确性。
- 微调优化:通过对父模型
klue/bert-base
进行微调,提升了模型的性能。
📦 安装指南
暂未提供具体的安装步骤,你可以参考Hugging Face平台上的相关文档进行安装。
💻 使用示例
基础用法
你可以使用以下代码示例调用模型进行情感分类:
📚 详细文档
数据集信息
模型信息
混淆矩阵

微调日志
- distilbert-base-multilingual-cased进行5个epoch的微调 --> f1: 0.25 (2023.08.08)
- bongsoo/mdistilbertV3.1进行5个epoch的微调 --> f1: 0.26 (2023.08.09)
- klue/bert-base进行5个epoch的微调 --> 见以下结果 (2023.08.09)
微调结果
{
"test_loss": 2.8668248653411865,
"test_accuracy": 0.29371889480006863,
"test_f1": 0.29102037288558685,
"test_runtime": 50.8082,
"test_samples_per_second": 458.745,
"test_steps_per_second": 14.348
}
模型配置
{
"_name_or_path": "klue/bert-base",
"architectures": [
"BertForSequenceClassification"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"id2label":{
"0": "愤怒",
"1": "唠叨",
"2": "沮丧",
"3": "烦躁",
"4": "防御性的",
"5": "恶意的",
"6": "焦虑",
"7": "恶心",
"8": "恼火",
"9": "厌烦的",
"10": "悲伤",
"11": "失望",
"12": "悲痛",
"13": "后悔",
"14": "忧郁",
"15": "麻木",
"16": "世俗的",
"17": "流泪的",
"18": "气馁",
"19": "幻灭的",
"20": "不安",
"21": "害怕",
"22": "有压力的",
"23": "脆弱的",
"24": "混乱的",
"25": "困惑的",
"26": "怀疑的",
"27": "担忧的",
"28": "谨慎的",
"29": "急躁的",
"30": "伤害",
"31": "嫉妒",
"32": "被背叛",
"33": "孤立的",
"34": "震惊",
"35": "贫穷不幸的",
"36": "牺牲的",
"37": "冤枉的",
"38": "痛苦的",
"39": "被抛弃",
"40": "慌张",
"41": "孤立的(慌张的)",
"42": "在意他人目光的",
"43": "孤独的",
"44": "自卑感",
"45": "罪恶感",
"46": "羞愧的",
"47": "厌恶的",
"48": "差劲的",
"49": "混乱的(慌张的)",
"50": "喜悦",
"51": "感激的",
"52": "信任的",
"53": "舒适的",
"54": "满意的",
"55": "兴奋",
"56": "悠闲",
"57": "安心",
"58": "兴奋的",
"59": "自信的"
},
"label2id": {
"愤怒": 0,
"唠叨": 1,
"沮丧": 2,
"烦躁": 3,
"防御性的": 4,
"恶意的": 5,
"焦虑": 6,
"恶心": 7,
"恼火": 8,
"厌烦的": 9,
"悲伤": 10,
"失望": 11,
"悲痛": 12,
"后悔": 13,
"忧郁": 14,
"麻木": 15,
"世俗的": 16,
"流泪的": 17,
"气馁": 18,
"幻灭的": 19,
"不安": 20,
"害怕": 21,
"有压力的": 22,
"脆弱的": 23,
"混乱的": 24,
"困惑的": 25,
"怀疑的": 26,
"担忧的": 27,
"谨慎的": 28,
"急躁的": 29,
"伤害": 30,
"嫉妒": 31,
"被背叛": 32,
"孤立的": 33,
"震惊": 34,
"贫穷不幸的": 35,
"牺牲的": 36,
"冤枉的": 37,
"痛苦的": 38,
"被抛弃": 39,
"慌张": 40,
"孤立的(慌张的)": 41,
"在意他人目光的": 42,
"孤独的": 43,
"自卑感": 44,
"罪恶感": 45,
"羞愧的": 46,
"厌恶的": 47,
"差劲的": 48,
"混乱的(慌张的)": 49,
"喜悦": 50,
"感激的": 51,
"信任的": 52,
"舒适的": 53,
"满意的": 54,
"兴奋": 55,
"悠闲": 56,
"安心": 57,
"兴奋的": 58,
"自信的": 59
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"problem_type": "single_label_classification",
"torch_dtype": "float32",
"transformers_version": "4.30.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 32000
}
🔧 技术细节
本模型基于BertForSequenceClassification
架构,通过对父模型klue/bert-base
进行微调得到。在微调过程中,使用了Aihub-감성대화말뭉치数据集,并进行了多个epoch的训练,以提升模型的性能。
📄 许可证
本项目采用CC BY-SA 4.0许可证。你可以在遵循许可证的前提下使用和分发本模型。