🚀 Llama-3.1-8B-Instruct-心理健康分类
本模型是 meta-llama/Meta-Llama-3.1-8B-Instruct 在 suchintikasarkar/sentiment-analysis-for-mental-health 数据集上的微调版本,可用于从文本中预测各种心理健康障碍。
🚀 快速开始
按照 Fine-Tuning Llama 3.1 for Text Classification 教程,开启全新 Llama 模型的使用之旅,并定制 Llama-3.1-8B-It 以从文本中预测各种心理健康障碍。
💻 使用示例
基础用法
from transformers import AutoTokenizer,AutoModelForCausalLM,pipeline
import torch
model_id = "kingabzpro/Llama-3.1-8B-Instruct-Mental-Health-Classification"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
return_dict=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text = "I'm trapped in a storm of emotions that I can't control, and it feels like no one understands the chaos inside me"
prompt = f"""Classify the text into Normal, Depression, Anxiety, Bipolar, and return the answer as the corresponding mental health disorder label.
text: {text}
label: """.strip()
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipe(prompt, max_new_tokens=2, do_sample=True, temperature=0.1)
print(outputs[0]["generated_text"].split("label: ")[-1].strip())
📚 详细文档
评估指标
属性 |
详情 |
数据集 |
suchintikasarkar/sentiment-analysis-for-mental-health |
模型类型 |
Llama-3.1-8B-Instruct 微调版本 |
评估指标 |
准确率、F1值 |
任务类型 |
文本生成 |
标签 |
心理健康、Meta-Llama-3.1-8B-Instruct |
许可证 |
apache-2.0 |
评估结果
100%|██████████| 300/300 [03:24<00:00, 1.47it/s]
Accuracy: 0.913
Accuracy for label Normal: 0.972
Accuracy for label Depression: 0.913
Accuracy for label Anxiety: 0.667
Accuracy for label Bipolar: 0.800
分类报告:
precision recall f1-score support
Normal 0.92 0.97 0.95 143
Depression 0.93 0.91 0.92 115
Anxiety 0.75 0.67 0.71 27
Bipolar 1.00 0.80 0.89 15
accuracy 0.91 300
macro avg 0.90 0.84 0.87 300
weighted avg 0.91 0.91 0.91 300
混淆矩阵:
[[139 3 1 0]
[ 5 105 5 0]
[ 6 3 18 0]
[ 1 2 0 12]]
📄 许可证
本模型使用的是 apache-2.0 许可证。