Qwq Bakeneko 32b
基于Qwen2.5-32B和QwQ-32B合并优化的日语对话模型,通过Chat Vector和ORPO技术增强指令跟随能力
下载量 1,597
发布时间 : 3/12/2025
模型简介
该模型是针对日语任务优化的32B参数语言模型,通过参数向量合并和ORPO微调技术开发,擅长对话生成和指令理解
模型特点
Chat Vector合并技术
通过参数向量加减法融合QwQ-32B的对话能力
ORPO优化
使用Odds Ratio Preference Optimization进行指令微调
多阶段训练
结合预训练、向量合并和ORPO微调三阶段优化
模型能力
日语文本生成
多轮对话
指令理解
数学问题解答
知识问答
使用案例
教育
数学问题生成
自动生成微积分等数学问题并提供解答
可生成结构良好的数学题目和分步解答
客服
日语客服对话
处理日语用户的咨询和问题
能进行自然流畅的多轮对话
🚀 QwQ Bakeneko 32B (rinna/qwq-bakeneko-32b)
该模型是基于Qwen2.5架构的日语大语言模型,通过模型融合、蒸馏和ORPO等技术优化,在日语任务上表现出色。
🚀 快速开始
本模型是 rinna/qwen2.5-bakeneko-32b 经过指令调优的推理变体,使用聊天向量(Chat Vector)和优势比偏好优化(Odds Ratio Preference Optimization, ORPO)进行微调。它遵循 Qwen/QwQ-32B 的聊天格式,旨在在日语语言任务中提供卓越的性能。
✨ 主要特性
模型架构
这是一个基于Transformer的语言模型,具有64层和5120的隐藏层大小。如需全面了解该架构,请参考 Qwen2.5技术报告。
训练过程
本模型通过多阶段训练过程开发:
- 模型融合:基础模型 rinna/qwen2.5-bakeneko-32b 通过添加聊天向量的过程增强了指令遵循能力。聊天向量是通过从 Qwen/Qwen2.5-32B 中减去 Qwen/QwQ-32B 的参数向量得到的,如下所示:
rinna/qwen2.5-bakeneko-32b + 0.8 * (Qwen/QwQ-32B - Qwen/Qwen2.5-32B)
在此过程中,在执行参数向量的减法和加法时省略了嵌入层。
- 蒸馏和ORPO:融合后的模型使用ORPO进一步优化,在由 DeepSeek-R1 生成的1300个精心策划的数据样本上进行训练。
贡献者
发布日期
2025年3月13日
📦 安装指南
文档未提及安装步骤,故跳过此章节。
💻 使用示例
基础用法
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "rinna/qwq-bakeneko-32b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{"role": "user", "content": "微分に関する簡単な文章問題を作成し、その問題を解いてください。"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=4096,
do_sample=True,
temperature=0.6,
top_k=40,
top_p=0.95,
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
response = "<think>\n" + response
print(response)
使用建议
为了获得最佳性能,建议在部署此模型之前查看 使用指南。
📚 详细文档
模型类型详情
属性 | 详情 |
---|---|
模型类型 | 日语持续预训练模型:Qwen2.5 Bakeneko 32B [HF] 指令调优模型:Qwen2.5 Bakeneko 32B Instruct [HF][AWQ][GGUF][GPTQ int8][GPTQ int4] DeepSeek R1蒸馏Qwen2.5融合推理模型:DeepSeek R1 Distill Qwen2.5 Bakeneko 32B [HF][AWQ][GGUF][GPTQ int8][GPTQ int4] QwQ融合推理模型:QwQ Bakeneko 32B [HF][AWQ][GGUF][GPTQ int8][GPTQ int4] QwQ Bakeneko融合指令调优模型:Qwen2.5 Bakeneko 32B Instruct V2 [HF][AWQ][GGUF][GPTQ int8][GPTQ int4] |
基准测试结果
模型 | 日语LM评估套件 | 日语MT-Bench(首轮) | 日语MT-Bench(多轮) |
---|---|---|---|
Qwen/Qwen2.5-32B | 79.46 | - | - |
rinna/qwen2.5-bakeneko-32b | 79.18 | - | - |
Qwen/Qwen2.5-32B-Instruct | 78.29 | 8.13 | 7.54 |
rinna/qwen2.5-bakeneko-32b-instruct | 79.62 | 8.17 | 7.66 |
rinna/qwen2.5-bakeneko-32b-instruct-v2 | 77.92 | 8.86 | 8.53 |
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | 73.51 | 7.39 | 6.88 |
Qwen/QwQ-32B | 76.12 | 8.58 | 8.25 |
rinna/qwq-bakeneko-32b | 78.31 | 8.81 | 8.52 |
如需详细的基准测试结果,请参考 rinna的LM基准测试页面(表20250313)。
分词器
本模型继承了原始 Qwen/QwQ-32B 的分词器。
引用方式
@misc{rinna/qwq-bakeneko-32b
title = {rinna/qwq-bakeneko-32b},
author = {Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei},
url = {https://huggingface.co/rinna/qwq-bakeneko-32b}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
参考文献
@article{qwen2.5,
title = {Qwen2.5 Technical Report},
author = {An Yang and Baosong Yang and Beichen Zhang and Binyuan Hui and Bo Zheng and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoran Wei and Huan Lin and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Yang and Jiaxi Yang and Jingren Zhou and Junyang Lin and Kai Dang and Keming Lu and Keqin Bao and Kexin Yang and Le Yu and Mei Li and Mingfeng Xue and Pei Zhang and Qin Zhu and Rui Men and Runji Lin and Tianhao Li and Tianyi Tang and Tingyu Xia and Xingzhang Ren and Xuancheng Ren and Yang Fan and Yang Su and Yichang Zhang and Yu Wan and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zihan Qiu},
journal = {arXiv preprint arXiv:2412.15115},
year = {2024}
}
@misc{qwq32b,
title = {QwQ-32B: Embracing the Power of Reinforcement Learning},
url = {https://qwenlm.github.io/blog/qwq-32b/},
author = {Qwen Team},
month = {March},
year = {2025}
}
@misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
title = {DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
author = {DeepSeek-AI and Daya Guo and Dejian Yang and Haowei Zhang and Junxiao Song and Ruoyu Zhang and Runxin Xu and Qihao Zhu and Shirong Ma and Peiyi Wang and Xiao Bi and Xiaokang Zhang and Xingkai Yu and Yu Wu and Z. F. Wu and Zhibin Gou and Zhihong Shao and Zhuoshu Li and Ziyi Gao and Aixin Liu and Bing Xue and Bingxuan Wang and Bochao Wu and Bei Feng and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Qu and Hui Li and Jianzhong Guo and Jiashi Li and Jiawei Wang and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and J. L. Cai and Jiaqi Ni and Jian Liang and Jin Chen and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Liang Zhao and Litong Wang and Liyue Zhang and Lei Xu and Leyi Xia and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Meng Li and Miaojun Wang and Mingming Li and Ning Tian and Panpan Huang and Peng Zhang and Qiancheng Wang and Qinyu Chen and Qiushi Du and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and R. J. Chen and R. L. Jin and Ruyi Chen and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shengfeng Ye and Shiyu Wang and Shuiping Yu and Shunfeng Zhou and Shuting Pan and S. S. Li and Shuang Zhou and Shaoqing Wu and Shengfeng Ye and Tao Yun and Tian Pei and Tianyu Sun and T. Wang and Wangding Zeng and Wanjia Zhao and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and W. L. Xiao and Wei An and Xiaodong Liu and Xiaohan Wang and Xiaokang Chen and Xiaotao Nie and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and X. Q. Li and Xiangyue Jin and Xiaojin Shen and Xiaosha Chen and Xiaowen Sun and Xiaoxiang Wang and Xinnan Song and Xinyi Zhou and Xianzu Wang and Xinxia Shan and Y. K. Li and Y. Q. Wang and Y. X. Wei and Yang Zhang and Yanhong Xu and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Wang and Yi Yu and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yuan Ou and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yunfan Xiong and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Y. X. Zhu and Yanhong Xu and Yanping Huang and Yaohui Li and Yi Zheng and Yuchen Zhu and Yunxian Ma and Ying Tang and Yukun Zha and Yuting Yan and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhicheng Ma and Zhigang Yan and Zhiyu Wu and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Zizheng Pan and Zhen Huang and Zhipeng Xu and Zhongyu Zhang and Zhen Zhang},
year = {2025},
eprint = {2501.12948},
archivePrefix = {arXiv},
primaryClass = {cs.CL},
url = {https://arxiv.org/abs/2501.12948},
}
@misc{huang2023chat,
title = {Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages},
author = {Huang, Shih-Cheng and Li, Pin-Zu and Hsu, Yu-Chi and Chen, Kuang-Ming and Lin, Yu Tung and Hsiao, Shih-Kai and Tzong-Han Tsai, Richard and Lee, Hung-yi},
year = {2023},
url = {https://arxiv.org/abs/2310.04799}
}
@inproceedings{hong2024orpo,
title = {ORPO: Monolithic Preference Optimization without Reference Model},
author = {Hong, Jiwoo and Lee, Noah and Thorne, James},
booktitle = {Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
pages = {11170--11189},
year = {2024}
}
📄 许可证
本模型采用 Apache许可证2.0版。
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98