🚀 Blurdus-7b-v0.1
Blurdus-7b-v0.1 是一个通过合并多个模型而得到的模型。它借助 LazyMergekit 工具,将多个基础模型进行合并,在文本生成任务上展现出了一定的性能。
🚀 快速开始
安装依赖
!pip install -qU transformers accelerate
运行示例代码
from transformers import AutoTokenizer
import transformers
import torch
model = "222gate/Blurdus-7b-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
✨ 主要特性
Blurdus-7b-v0.1 模型通过合并以下模型而成:
📦 安装指南
运行以下命令安装所需依赖:
!pip install -qU transformers accelerate
💻 使用示例
基础用法
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "222gate/Blurdus-7b-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
📚 详细文档
🧩 配置信息
models:
- model: 222gate/Blurred-Beagle-7b-slerp
parameters:
density: [1, 0.7, 0.1]
weight: 1.0
- model: 222gate/BrurryDog-7b-v0.1
parameters:
density: 0.5
weight: [0, 0.3, 0.7, 1]
- model: liminerity/Blur-7b-v1.21
parameters:
density: 0.33
weight:
- filter: mlp
value: 0.5
- value: 0
merge_method: ties
base_model: udkai/Turdus
parameters:
normalize: true
int8_mask: true
dtype: float16
详细结果可查看 此处
指标 |
值 |
平均值 |
74.35 |
AI2 推理挑战 (25 次少样本学习) |
72.27 |
HellaSwag (10 次少样本学习) |
88.50 |
MMLU (5 次少样本学习) |
64.82 |
TruthfulQA (0 次少样本学习) |
69.72 |
Winogrande (5 次少样本学习) |
82.95 |
GSM8k (5 次少样本学习) |
67.85 |
📄 许可证
本项目采用 Apache-2.0 许可证。