🚀 摘要生成模型 summarization_fanpage128
本模型是 gsarti/it5-base 在 Fanpage 数据集上针对抽象摘要生成任务进行微调后的版本。它能够有效处理意大利语的文本摘要生成任务,为相关领域提供了高效的解决方案。
🚀 快速开始
本模型是在 Fanpage 数据集上对 gsarti/it5-base 进行微调得到的,用于抽象摘要生成任务。
它取得了以下结果:
- 损失值:1.5348
- Rouge1:34.1882
- Rouge2:15.7866
- Rougel:25.141
- Rougelsum:28.4882
- 生成长度:69.3041
💻 使用示例
基础用法
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-fanpage-128")
model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-fanpage-128")
📚 详细文档
训练超参数
训练过程中使用了以下超参数:
- 学习率:5e-05
- 训练批次大小:3
- 评估批次大小:3
- 随机种子:42
- 优化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 学习率调度器类型:线性
- 训练轮数:4.0
框架版本
- Transformers 4.12.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
📄 许可证
文档中未提及相关许可证信息。
📖 引用
更多详细信息和结果请参考 已发表的论文
@Article{info13050228,
AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo},
TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization},
JOURNAL = {Information},
VOLUME = {13},
YEAR = {2022},
NUMBER = {5},
ARTICLE-NUMBER = {228},
URL = {https://www.mdpi.com/2078-2489/13/5/228},
ISSN = {2078-2489},
ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.},
DOI = {10.3390/info13050228}
}
信息表格
属性 |
详情 |
模型类型 |
基于 gsarti/it5-base 微调的抽象摘要生成模型 |
训练数据 |
ARTeLab/fanpage 数据集 |
评估指标 |
Rouge |
基础模型 |
gsarti/it5-base |