Bart Large Cnn
模型简介
该模型采用Transformer编码器-解码器架构,通过去噪序列到序列预训练方法,在文本生成和理解任务中表现优异,当前版本专门优化了新闻摘要能力
模型特点
双向编码器结构
结合BERT式双向编码器,能充分理解上下文语义
自回归解码器
类似GPT的自回归生成能力,保证文本生成流畅性
专业领域微调
在CNN每日邮报新闻数据集上专门优化,摘要效果显著
模型能力
新闻文本摘要
长文本压缩
关键信息提取
使用案例
新闻媒体
新闻简报生成
将长篇新闻报道自动压缩为简洁摘要
ROUGE-L得分30.6186(CNN每日邮报测试集)
内容提要生成
为在线新闻平台自动生成文章预览
生成文本平均长度78.6个词
信息处理
文档摘要
对长文档进行关键信息提取
🚀 BART(大型模型),在CNN Daily Mail上微调
BART模型在英文语料上进行了预训练,并在CNN Daily Mail上进行了微调。该模型由Lewis等人在论文BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension中提出,并首次在此仓库发布。
免责声明:发布BART的团队并未为此模型撰写模型卡片,此模型卡片由Hugging Face团队撰写。
🚀 快速开始
本模型可用于文本摘要任务。以下是使用pipeline API调用此模型的示例代码:
from transformers import pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York.
A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband.
Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other.
In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage.
Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the
2010 marriage license application, according to court documents.
Prosecutors said the marriages were part of an immigration scam.
On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further.
After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective
Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.
All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say.
Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages.
Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted.
The case was referred to the Bronx District Attorney\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\'s
Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt, Turkey, Georgia, Pakistan and Mali.
Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force.
If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18.
"""
print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False))
>>> [{'summary_text': 'Liana Barrientos, 39, is charged with two counts of "offering a false instrument for filing in the first degree" In total, she has been married 10 times, with nine of her marriages occurring between 1999 and 2002. She is believed to still be married to four men.'}]
✨ 主要特性
- 模型架构:BART是一种Transformer编码器 - 解码器(seq2seq)模型,具有双向(类似BERT)的编码器和自回归(类似GPT)的解码器。
- 预训练方式:通过(1)使用任意噪声函数破坏文本,(2)学习一个模型来重构原始文本进行预训练。
- 应用场景:在微调后,BART在文本生成任务(如摘要、翻译)中表现出色,同时在理解任务(如文本分类、问答)中也有良好表现。此特定检查点在CNN Daily Mail(一个大型文本 - 摘要对集合)上进行了微调。
📚 详细文档
模型描述
BART是一个Transformer编码器 - 解码器(seq2seq)模型,它结合了双向(类似BERT)的编码器和自回归(类似GPT)的解码器。BART的预训练过程包括两个步骤:首先使用任意噪声函数破坏文本,然后学习一个模型来重构原始文本。
BART在微调后,在文本生成任务(如摘要、翻译)中特别有效,同时在理解任务(如文本分类、问答)中也表现良好。此特定检查点在CNN Daily Mail(一个大型文本 - 摘要对集合)上进行了微调。
预期用途和限制
你可以使用此模型进行文本摘要任务。
BibTeX引用信息
@article{DBLP:journals/corr/abs-1910-13461,
author = {Mike Lewis and
Yinhan Liu and
Naman Goyal and
Marjan Ghazvininejad and
Abdelrahman Mohamed and
Omer Levy and
Veselin Stoyanov and
Luke Zettlemoyer},
title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension},
journal = {CoRR},
volume = {abs/1910.13461},
year = {2019},
url = {http://arxiv.org/abs/1910.13461},
eprinttype = {arXiv},
eprint = {1910.13461},
timestamp = {Thu, 31 Oct 2019 14:02:26 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
📄 许可证
本模型使用MIT许可证。
📦 模型信息
属性 | 详情 |
---|---|
模型类型 | 文本摘要模型 |
训练数据 | CNN Daily Mail |
评估指标 | ROUGE-1: 42.9486;ROUGE-2: 20.8149;ROUGE-L: 30.6186;ROUGE-LSUM: 40.0376;loss: 2.529000997543335;gen_len: 78.5866 |
Bart Large Cnn
MIT
基于英语语料预训练的BART模型,专门针对CNN每日邮报数据集进行微调,适用于文本摘要任务
文本生成 英语
B
facebook
3.8M
1,364
Parrot Paraphraser On T5
Parrot是一个基于T5的释义框架,专为加速训练自然语言理解(NLU)模型而设计,通过生成高质量释义实现数据增强。
文本生成
Transformers

P
prithivida
910.07k
152
Distilbart Cnn 12 6
Apache-2.0
DistilBART是BART模型的蒸馏版本,专门针对文本摘要任务进行了优化,在保持较高性能的同时显著提升了推理速度。
文本生成 英语
D
sshleifer
783.96k
278
T5 Base Summarization Claim Extractor
基于T5架构的模型,专门用于从摘要文本中提取原子声明,是摘要事实性评估流程的关键组件。
文本生成
Transformers 英语

T
Babelscape
666.36k
9
Unieval Sum
UniEval是一个统一的多维评估器,用于自然语言生成任务的自动评估,支持多个可解释维度的评估。
文本生成
Transformers

U
MingZhong
318.08k
3
Pegasus Paraphrase
Apache-2.0
基于PEGASUS架构微调的文本复述模型,能够生成语义相同但表达不同的句子。
文本生成
Transformers 英语

P
tuner007
209.03k
185
T5 Base Korean Summarization
这是一个基于T5架构的韩语文本摘要模型,专为韩语文本摘要任务设计,通过微调paust/pko-t5-base模型在多个韩语数据集上训练而成。
文本生成
Transformers 韩语

T
eenzeenee
148.32k
25
Pegasus Xsum
PEGASUS是一种基于Transformer的预训练模型,专门用于抽象文本摘要任务。
文本生成 英语
P
google
144.72k
198
Bart Large Cnn Samsum
MIT
基于BART-large架构的对话摘要模型,专为SAMSum语料库微调,适用于生成对话摘要。
文本生成
Transformers 英语

B
philschmid
141.28k
258
Kobart Summarization
MIT
基于KoBART架构的韩语文本摘要模型,能够生成韩语新闻文章的简洁摘要。
文本生成
Transformers 韩语

K
gogamza
119.18k
12
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98