Measuring Embeddings V4.2
这是一个在测量领域数据集上微调的句子转换器模型,用于生成语义嵌入向量,支持语义文本相似性、语义搜索等任务。
下载量 61
发布时间 : 3/12/2025
模型简介
该模型基于intfloat/multilingual-e5-large-instruct微调,专门用于处理测量工程领域的文本,将句子和段落映射到1024维密集向量空间。
模型特点
测量领域优化
在measuring-embeddings-v4数据集上微调,特别适合处理测量工程领域的专业术语和概念
高维语义空间
将文本映射到1024维密集向量空间,能捕捉细微的语义差异
多语言支持
基于multilingual-e5-large-instruct基础模型,具备多语言处理能力
长文本处理
支持最大512个标记的序列长度,能处理较长的专业描述文本
模型能力
语义文本相似性计算
语义搜索
文本分类
聚类分析
复述挖掘
使用案例
测量工程
校准记录匹配
自动匹配和关联设备校准记录与相关技术文档
提高校准文档管理的效率和准确性
技术文档检索
基于语义相似性的测量系统技术文档检索
帮助工程师快速找到相关技术资料
质量控制
不确定度分析
关联不确定度点数据与相关测量系统文档
支持更全面的不确定度评估流程
🚀 基于intfloat/multilingual-e5-large-instruct的句子转换器模型
本模型是基于 sentence-transformers 框架,在 measuring-embeddings-v4 数据集上对 intfloat/multilingual-e5-large-instruct 模型进行微调得到的。它可以将句子和段落映射到一个 1024 维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
首先,你需要安装 sentence-transformers
库:
pip install -U sentence-transformers
然后,你可以加载该模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("Lauther/measuring-embeddings-v4.2")
# 进行推理
sentences = [
'uncertainty points',
'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 多用途:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
- 高维向量空间:能够将句子和段落映射到 1024 维的密集向量空间,有效捕捉语义信息。
- 微调模型:基于
intfloat/multilingual-e5-large-instruct
模型在特定数据集上进行微调,更适用于特定领域的任务。
📦 安装指南
安装 sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("Lauther/measuring-embeddings-v4.2")
# 进行推理
sentences = [
'uncertainty points',
'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | intfloat/multilingual-e5-large-instruct |
最大序列长度 | 512 个标记 |
输出维度 | 1024 维 |
相似度函数 | 余弦相似度 |
训练数据集 | measuring-embeddings-v4 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
训练详情
训练数据集
measuring-embeddings-v4
- 数据集:measuring-embeddings-v4,版本为 1e3ca2c
- 大小:3075 个训练样本
- 列:
sentence1
、sentence2
和score
- 基于前 1000 个样本的近似统计信息:
| | sentence1 | sentence2 | score |
| ---- | ---- | ---- | ---- |
| 类型 | 字符串 | 字符串 | 浮点数 |
| 详情 |
- 最小:3 个标记
- 平均:7.55 个标记
- 最大:17 个标记
- 最小:80 个标记
- 平均:180.22 个标记
- 最大:406 个标记
- 最小:0.07
- 平均:0.21
- 最大:0.95
- 样本:
| sentence1 | sentence2 | score |
| ---- | ---- | ---- |
|
last calibrated span
|What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.
|0.1
| |flow computer configuration
|What is a Measurement Type?<br>Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include **fiscal**, **appropriation**, **operational**, and **custody** measurements. <br><br>- **Fiscal measurements** are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities. <br>- **Appropriation measurements** track resource allocation and ownership distribution among stakeholders. <br>- **Operational measurements** support real-time monitoring and process optimization within industrial operations. <br>- **Custody measurements** are essential for legal and contractual transactions, ensuring precise handover of fluids between parties. <br><br>These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution.
|0.1
| |uncertainty certificate number
|What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.
|0.1
| - 损失函数:
CoSENTLoss
,参数如下:
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
评估数据集
measuring-embeddings-v4
- 数据集:measuring-embeddings-v4,版本为 1e3ca2c
- 大小:659 个评估样本
- 列:
sentence1
、sentence2
和score
- 基于前 659 个样本的近似统计信息:
| | sentence1 | sentence2 | score |
| ---- | ---- | ---- | ---- |
| 类型 | 字符串 | 字符串 | 浮点数 |
| 详情 |
- 最小:3 个标记
- 平均:7.63 个标记
- 最大:17 个标记
- 最小:80 个标记
- 平均:186.36 个标记
- 最大:406 个标记
- 最小:0.07
- 平均:0.2
- 最大:0.9
- 样本:
| sentence1 | sentence2 | score |
| ---- | ---- | ---- |
|
measurement system details
|What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.
|0.15
| |measurement system tag EMED-3102-02-010
|What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.
|0.24
| |static pressure
|What is a Meter Stream?<br>A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.<br><br>Key Aspects of a Meter Stream:<br>- Status: Indicates whether the meter stream is active or inactive.<br>- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.<br>- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.<br>Why is a Meter Stream Important?<br>A **meter stream** is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.
|0.1
| - 损失函数:
CoSENTLoss
,参数如下:
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
训练超参数
非默认超参数
eval_strategy
:按步数评估per_device_train_batch_size
:4per_device_eval_batch_size
:4gradient_accumulation_steps
:4learning_rate
:2e-05num_train_epochs
:10warmup_ratio
:0.1
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
点击展开
轮次 | 步数 | 训练损失 | 验证损失 |
---|---|---|---|
2.3953 | 460 | 0.8121 | - |
2.4473 | 470 | 1.7843 | - |
2.4993 | 480 | 3.0975 | - |
2.5514 | 490 | 0.8585 | - |
2.6034 | 500 | 2.7931 | - |
2.6554 | 510 | 1.4479 | - |
2.7074 | 520 | 1.6132 | - |
2.7594 | 530 | 0.8279 | - |
2.8114 | 540 | 2.0968 | - |
2.8635 | 550 | 1.5086 | - |
2.9155 | 560 | 1.7022 | - |
2.9675 | 570 | 1.7252 | - |
3.0208 | 580 | 0.329 | - |
3.0728 | 590 | 3.0231 | - |
3.1248 | 600 | 1.2077 | 0.4939 |
3.1769 | 610 | 1.7389 | - |
3.2289 | 620 | 1.747 | - |
3.2809 | 630 | 2.608 | - |
3.3329 | 640 | 2.3748 | - |
3.3849 | 650 | 0.9898 | - |
3.4369 | 660 | 3.6768 | - |
3.4889 | 670 | 1.7257 | - |
3.5410 | 680 | 1.2324 | - |
3.5930 | 690 | 1.4847 | - |
3.6450 | 700 | 0.5312 | - |
3.6970 | 710 | 2.6352 | - |
3.7490 | 720 | 3.3293 | - |
3.8010 | 730 | 1.0756 | - |
3.8531 | 740 | 1.2176 | - |
3.9051 | 750 | 1.4641 | 0.2318 |
3.9571 | 760 | 0.4642 | - |
4.0052 | 770 | 0.8467 | - |
4.0572 | 780 | 0.6422 | - |
4.1092 | 790 | 1.2341 | - |
4.1612 | 800 | 1.2382 | - |
4.2133 | 810 | 0.8518 | - |
4.2653 | 820 | 2.2545 | - |
4.3173 | 830 | 1.0461 | - |
4.3693 | 840 | 1.4097 | - |
4.4213 | 850 | 1.6382 | - |
4.4733 | 860 | 3.3653 | - |
4.5254 | 870 | 1.6778 | - |
4.5774 | 880 | 2.4592 | - |
4.6294 | 890 | 2.3244 | - |
4.6814 | 900 | 0.7048 | 0.2351 |
4.7334 | 910 | 1.507 | - |
4.7854 | 920 | 1.9508 | - |
4.8375 | 930 | 0.9046 | - |
4.8895 | 940 | 1.3923 | - |
4.9415 | 950 | 2.8222 | - |
4.9935 | 960 | 0.8341 | - |
5.0416 | 970 | 1.7129 | - |
5.0936 | 980 | 0.5792 | - |
5.1456 | 990 | 1.5091 | - |
5.1977 | 1000 | 0.8392 | - |
5.2497 | 1010 | 1.3499 | - |
5.3017 | 1020 | 1.1315 | - |
5.3537 | 1030 | 0.8192 | - |
5.4057 | 1040 | 0.3839 | - |
5.4577 | 1050 | 0.887 | 0.3572 |
5.5098 | 1060 | 0.9957 | - |
5.5618 | 1070 | 1.4341 | - |
5.6138 | 1080 | 0.5888 | - |
5.6658 | 1090 | 1.4963 | - |
5.7178 | 1100 | 1.5912 | - |
5.7698 | 1110 | 1.3382 | - |
5.8218 | 1120 | 1.4406 | - |
5.8739 | 1130 | 1.0845 | - |
5.9259 | 1140 | 0.2931 | - |
5.9779 | 1150 | 0.8994 | - |
6.0260 | 1160 | 1.1391 | - |
6.0780 | 1170 | 1.4646 | - |
6.1300 | 1180 | 0.509 | - |
6.1821 | 1190 | 0.4108 | - |
6.2341 | 1200 | 0.418 | 0.2573 |
6.2861 | 1210 | 1.4609 | - |
6.3381 | 1220 | 1.4237 | - |
6.3901 | 1230 | 0.6612 | - |
6.4421 | 1240 | 1.52 | - |
6.4941 | 1250 | 0.9426 | - |
6.5462 | 1260 | 1.5047 | - |
6.5982 | 1270 | 0.2918 | - |
6.6502 | 1280 | 0.96 | - |
6.7022 | 1290 | 1.6685 | - |
6.7542 | 1300 | 0.6779 | - |
6.8062 | 1310 | 0.0522 | - |
6.8583 | 1320 | 1.5055 | - |
6.9103 | 1330 | 0.2947 | - |
6.9623 | 1340 | 0.7499 | - |
7.0104 | 1350 | 2.6794 | 0.1881 |
7.0624 | 1360 | 1.4322 | - |
7.1144 | 1370 | 0.1859 | - |
7.1664 | 1380 | 1.0946 | - |
7.2185 | 1390 | 1.0941 | - |
7.2705 | 1400 | 0.8873 | - |
7.3225 | 1410 | 0.3996 | - |
7.3745 | 1420 | 0.159 | - |
7.4265 | 1430 | 0.7672 | - |
7.4785 | 1440 | 0.6511 | - |
7.5306 | 1450 | 0.2682 | - |
7.5826 | 1460 | 1.5488 | - |
7.6346 | 1470 | 0.4513 | - |
7.6866 | 1480 | 0.7482 | - |
7.7386 | 1490 | 1.4327 | - |
7.7906 | 1500 | 1.0277 | 0.1801 |
7.8427 | 1510 | 0.4197 | - |
7.8947 | 1520 | 3.3415 | - |
7.9467 | 1530 | 0.7131 | - |
7.9987 | 1540 | 0.7276 | - |
8.0468 | 1550 | 1.1939 | - |
8.0988 | 1560 | 0.4333 | - |
8.1508 | 1570 | 1.3594 | - |
8.2029 | 1580 | 0.9792 | - |
8.2549 | 1590 | 0.4581 | - |
8.3069 | 1600 | 0.5785 | - |
8.3589 | 1610 | 0.4015 | - |
8.4109 | 1620 | 0.5693 | - |
8.4629 | 1630 | 1.4925 | - |
8.5150 | 1640 | 0.6028 | - |
8.5670 | 1650 | 0.2087 | 0.1802 |
8.6190 | 1660 | 1.0404 | - |
8.6710 | 1670 | 0.8293 | - |
8.7230 | 1680 | 1.1231 | - |
8.7750 | 1690 | 0.4747 | - |
8.8270 | 1700 | 1.0668 | - |
8.8791 | 1710 | 1.2665 | - |
8.9311 | 1720 | 0.3004 | - |
8.9831 | 1730 | 0.1333 | - |
9.0312 | 1740 | 1.0171 | - |
9.0832 | 1750 | 1.3999 | - |
9.1352 | 1760 | 0.1939 | - |
9.1873 | 1770 | 0.1591 | - |
9.2393 | 1780 | 0.1243 | - |
9.2913 | 1790 | 0.8689 | - |
9.3433 | 1800 | 0.4325 | 0.1501 |
9.3953 | 1810 | 0.5094 | - |
9.4473 | 1820 | 0.3178 | - |
9.4993 | 1830 | 0.211 | - |
9.5514 | 1840 | 1.3497 | - |
9.6034 | 1850 | 0.6287 | - |
9.6554 | 1860 | 0.4895 | - |
9.7074 | 1870 | 0.3925 | - |
9.7594 | 1880 | 0.4384 | - |
9.8114 | 1890 | 0.8487 | - |
9.8635 | 1900 | 0.9134 | - |
9.9155 | 1910 | 0.1522 | - |
9.9675 | 1920 | 0.3798 | - |
框架版本
- Python: 3.11.0
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
📄 许可证
文档中未提及相关信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98